

Wireless Mesh Software Defined Networks (wmSDN)

Andrea Detti, Claudio Pisa, Stefano Salsano, Nicola Blefari-Melazzi
Electronic Engineering Dept.

University of Rome “Tor Vergata”
Italy

{andrea.detti, claudio.pisa, stefano.salsano, blefari}@uniroma2.it

Abstract—In this paper we propose to integrate Software
Defined Networking (SDN) principles in Wireless Mesh
Networks (WMN) formed by OpenFlow switches. The use of a
centralized network controller and the ability to setup arbitrary
paths for data flows make SDN a handy tool to deploy fine-
grained traffic engineering algorithms in WMNs. However,
centralized control may be harmful in multi-hop radio networks
formed by commodity devices (e.g. Wireless Community
Networks), in which node isolation and network fragmentation
are not rare events. To exploit the pros and mitigate the cons, our
framework uses the traditional OpenFlow centralized controller
to engineer the routing of data traffic, while it uses a distributed
controller based on OLSR to route: i) OpenFlow control traffic,
ii) data traffic, in case of central controller failure. We
implemented and tested our Wireless Mesh Software Defined
Network (wmSDN) showing its applicability to a traffic
engineering use-case, in which the controller logic balances
outgoing traffic among the Internet gateways of the mesh. Albeit
simple, this use case allows showing a possible usage of SDN that
improves user performance with respect to the case of a
traditional mesh with IP forwarding and OLSR routing. The
wmSDN software toolkit is formed by Open vSwitch, POX
controller, OLSR daemon and our own Bash and Python scripts.
The tests have been carried out in an emulation environment
based on Linux Containers, NS3 and CORE tools.

Keywords— Software Defined Networking; Wireless Mesh
Networks; Community Networks; Traffic engineering

I. INTRODUCTION
A Wireless Mesh Network (WMN) is a multi-hop radio

network, whose nodes are IP routers with one or multiple
wireless interfaces, typically based on IEEE 802.11 WiFi. WiFi
interfaces are usually configured in ad-hoc mode and use
omnidirectional antennas. However, the increasing availability
of wireless routers with multiple interfaces allows configuring
the interfaces in the more reliable infrastructure mode, in which
some hub routers are configured as Access Point (AP) and
collect traffic from spoke routers that are configured as
STAtion (STA). A hub router is interconnected to other parts
of the network through another WiFi interface, which may also
operate in the same frequency, in case of directional antennas.

Nowadays the greatest mesh networks are the so called
Wireless Community Networks (WCNs) (e.g. [1][2][3][4]).
WCNs are used to share the cost of Internet access, but also to
support the distribution of community information and
services. Current wireless community networks may have more
than 20.000 nodes [4].

Software Defined Networking and its OpenFlow
implementation [5] have been recently proposed for application
in Wireless Mesh Networks (WMNs). The work in [6]
describes the definition and implementation of a solution for
OpenFlow-based routing in WMNs and its applicability to the
mobility management of mobile clients. The works in [7] and
[8] provide an analysis of opportunities and research
challenges arising from the application of SDN in wireless
heterogeneous scenarios, including WMNs.

Realizing a mesh of OpenFlow switches, rather than of IP
routers, provides the flexibility of implementing packet
processing functions, such as forwarding or filtering, which
may operate on a multi-protocol base, up to the transport layer
headers. This flexibility can foster innovation in mobility
management, advanced routing and traffic engineering, and,
more in general, in the optimization of the use of the scarce
communication resources of WMNs. Moreover, an OpenFlow
WMN simplifies network management, since the network
control logic runs on a centralized server, which has the task of
pushing matching criteria and processing actions to the
OpenFlow switches of the network.

In practical terms, switching from current WMNs based on
IP routers to WMNs based on OpenFlow switches requires a
software update only. Indeed, most WMN nodes are based on
Linux OS (e.g. OpenWRT distribution) and OpenFlow tools
like the OpenFlow Reference Implementation [11] or Open
vSwitch [15] are available for Linux-based systems (including
OpenWRT).

To achieve the pros described above we must face some
cons and the peculiar characteristics of the WMN environment,
such as the unreliability of radio channels that may temporarily
prevent the communications with the controller; or the
unavailability of layer 2 routing mechanisms such as Spanning
Tree or Auto Learning, which are instead commonly used in
wired deployment to support communications between
switches and controller.

To exploit the pros and mitigate the cons, the contribution
of this work is proposing and implementing a Wireless Mesh
Software Defined Network (wmSDN) that uses OpenFlow to
route data traffic, and exploits the OLSR routing protocol [12]
to: i) route OpenFlow control traffic; ii) route data traffic in the
emergency case of controller unreachability. The wmSDN
software toolkit implementation is composed by Open vSwitch
[15], the POX controller [14], OLSRd [13] and our own Bash
and Python scripts.

We test our wmSDN architecture in a concrete traffic
engineering use-case, for which we devise and implement the
logic for the POX controller [14]. The tests are carried out by
using an emulation environment based on Linux Containers
[16], NS3 and CORE tool [17]. All related software is released
as open-source [18].

II. OPENFLOW BACKGROUND
An OpenFlow based SDN is characterized by a

standardized programming interface, namely the OpenFlow
protocol, which separates forwarding and control
functionalities. As shown in Figure 1, an OpenFlow network is
formed by switches that forward data packets and communicate
with one or more controllers using the OpenFlow protocol.

A controller configures the forwarding behavior of the
switches by setting rules in their flow tables. A rule is
composed of match criteria and actions. The match criteria are
multi-protocol classifiers that identify the set of packets that
should be affected by the rule; the actions specify the packet
processing to be applied by the switch (e.g. output forwarding
port, header rewriting instructions, etc.).

The controller can install rules in a proactive way, or it can
react to events coming from the OpenFlow switches and be
notified through the OpenFlow protocol. The typical example
of the latter case is that of an OpenFlow switch unable to make
a forwarding decision, since the incoming packet does not
match any rules in the flow table. In this case the switch can be
configured to encapsulate the packet in a OpenFlow control
packet called packet-in, and send it to the controller. The
controller may carry out different actions, depending on its
software defined logic. For instance, the controller may
compute the route for this packet, push the related packet
forwarding rules down to the requesting switch and send back
the encapsulated packet. In turn, the switch will apply the new
forwarding rule to the returned packet, as well as to next
packets that match the same rule.

Note that in general an OpenFlow switch does not only
operate at layer 2 like an Ethernet switch, but it can implement
match criteria and actions at different protocol layers, up to the
transport layer in the current 1.1.0 version of the OpenFlow
specification [11]. This multi-protocol flexibility makes
possible to customize an OpenFlow switch to realize traditional
network appliances (e.g. an Ethernet switch, an IP router or a
NAT/firewall, etc) or a hybrid of them. In our WMN use-case
(Section IV), we use OpenFlow switches to carry out IP
forwarding on a flow basis and for this reason, in what follows
we remind the difference between the processing of an IP
packet in a traditional router and in an OpenFlow switch.

When a traditional router receives a packet, its routing table
associates the packet destination IP address to the next hop IP
address and to an outgoing interface. Assuming an Ethernet
like interface, the router resolves the next hop IP address into a
MAC address and forwards the packet by rewriting the MAC
addresses as follows: the destination MAC address becomes
the resolved next hop MAC address; and the source MAC
address become the router outgoing interface MAC address.

Flow table

Secure control
channel

OpenFlow
switch

Flow table

Secure control
channel

Flow table

Secure control
channel

Control network
for OpenFlow protocol packets

Data network
for non-OpenFlow packets

Controller

LogicEngine

Figure 1. OpenFlow network

In an OpenFlow switch, the IP routing table is replaced by
the flow table. For each rule of the table, the match will operate
on the IP destination address and mask. The rule actions
instruct the switch to forward a packet on the proper outgoing
interface, and to rewrite the source and destination MAC
addresses to behave as described above. We point out an
important difference among the regular IP and the OpenFlow
based approach: in the OpenFlow approach, the destination
MAC address of the IP next hop must be known when setting
the rule (and the IP next hop address is not even used in the
rule). In the IP approach, the IP next hop address is indicated in
the routing table, and the IP-to-MAC resolution can be
performed at packet forwarding time using ARP.

A fundamental requirement of an OpenFlow deployment is
that IP connectivity needs to be assured for the communication
between the OpenFlow switches and controller, which runs
over TCP (or SSL). Using the OpenFlow terminology, this
control can happen “in-band”, if the same network is used to
transfer both data and OpenFlow control traffic, or “out-of-
band” if different networks are used.

In a wired layer 2 network controlled with OpenFlow, out-
of-band signaling is mostly used. To deploy an out-of-band
control a dedicated Virtual LAN (VLAN) may be used to
transfer the data units of the OpenFlow protocol through
traditional layer-2 switching mechanisms like Spanning Tree
algorithm or auto learning of MAC addresses. In addition to
the control network, another VLAN is used to create a data
network for transferring data traffic, in which forwarding is
carried out using OpenFlow mechanisms and routing policies
are managed by the OpenFlow controller.

In case of in-band control both data and control traffic are
handled by OpenFlow mechanisms. Accordingly, locally
configured control-rules specify the actions to forward control
traffic, i.e. packets going to or coming from the controller. In
this wired case, it is possible to use a forwarding action (aka
OFPP_NORMAL) that merely enforces the use of traditional
layer-2 switching mechanisms. This assumes that the switch is
also able to operate with these traditional mechanisms and to
support the co-existence of them with OpenFlow. The
forwarding of data traffic takes place as previously described
for the out-of-band case.

WMR

WMR

WMR

WMR
WMR

Controller

Access
net

Access
net

Internet

Internet

Gateway 2

Gateway 1

10.0.0.a

10.0.0.b

10.0.0.c
10.0.0.d

10.0.0.e

10.0.0.f

192.168.0.0/24

192.168.1.0/24

Wireless or
wired access

interface Wireless
interface

Access
net

192.168.2.0/24

Figure 2. Wireless mesh network

Overall, in wired layer 2 networks both in-band and out-of-
band control solutions usually demand of standard layer 2
switching mechanisms to route OpenFlow control messages.

III. WIRELESS MESH SOFTWARE DEFINED NETWORK
The deployment of an OpenFlow based SDN in a WMN

environment presents some novel issues, like the setup of a
robust control framework that allows the switches both to
communicate with the controller, and to face the emergency
condition in which the controller is unavailable, e.g. due to a
network partition or a controller failure. In fact, VLANs cannot
be used to support out-of-band control strategy and the WMN
routing mechanism is usually not based on layer 2 mechanisms
(Spanning Tree algorithm / auto learning), but on layer 3
routing protocols like OLSR.

A solution to create an OpenFlow wireless mesh with out-
of-band control was proposed in [6], using different SSIDs for
the control and data network. This work, which to our
knowledge is the only that makes practical use of OpenFlow in
a wireless mesh scenario, relies on the capability of the
wireless driver to support multiple SSIDs. Differently, in this
paper we propose an architecture which uses a single SSID, in-
band control strategy and also supports controller failures. We
use the OpenFlow centralized controller to engineer the routing
of data traffic and use OLSR to locally set up the control-rules
used by OpenFlow control traffic. Moreover, OLSR is also
used to push emergency-rules in the switch. Such rules route
data traffic in emergency conditions, during which the
OpenFlow controller fails or is unreachable.

The reference network scenario is shown in Figure 2. A
WMN is composed of Wireless Mesh Routers (WMRs) which
provide connectivity to a set of Access networks (either
offering a wired or wireless interface to user terminals). A
subset of the WMRs operate as Gateways and provide
connectivity towards the Internet. This configuration is typical
of the current Wireless Community Networks. In our SDN
based approach, we add the OpenFlow controller, connected to
a WMR through a wireless/wired connection.

Control traffic and data traffic use different IP subnets. For
instance, the subnet 10.0.0.0/16 is used for control traffic,
while other subnets are used for data traffic.

OpenFlow
Switch Flow Table

OLSR
daemon

dummy
IP Routing Table

writes the
routing table

O2O

Writes flow tables
for control subnet

packets

OLSR
packets

Mac Address List

Figure 3. OpenFlow and OLSR interaction

The controller and the WMR wireless interfaces get an
address of the control subnet, while other interfaces of the
network get an IP address belonging to different subnets, e.g.
192.168.x.0/24, each announced in OLSR as an HNA network.

In-band control network
As we want to deploy an in-band control, we need to locally
set-up the control-rules to forward OpenFlow control packets,
which are packets with destination IP address belonging to the
control-subnet. To this aim we use the OLSR routing protocol
to learn the topology of the control-subnet and then exploit this
knowledge to setup the control-rules. Accordingly, an OLSR
routing instance runs on each WMR node and the IP address of
the controller is also advertised by OLSR using a Host and
Network Association (HNA) messages with /32 mask.

Figure 3 reports the main entities of a WMR involved in
the interplay between OLSR and OpenFlow. The control-rules
used by OpenFlow message are configured by the OLSR-to-
OpenFlow (O2O) entity, by inspecting an IP routing table
handled by the OLSR daemon. This IP routing table configured
is a “dummy” one, i.e. not actually used by the operating
system when forwarding IP packets. In the Linux case this is a
user defined routing table, different from the kernel main one,
and never referenced in the Routing Policy Data Base.

An entry of the dummy routing table has the form <control-
subnet IP address/32, next-hop, output interface>; the O2O
module converts it in a rule of the OpenFlow table whose
match is “IP destination == control-subnet IP address” and
whose action is “change source MAC address with the MAC
address of outgoing interface and the destination MAC address
with the MAC address of the next-hop”. Therefore the O2O
module needs to know the MAC addresses of the WMRs; this
IP-to-MAC translation can be provided offline (as in our
current preliminary implementation) or can be distributed by a
novel OLSR plug-in, so that each WMR can learn the MAC
addresses of all other WMRs1. To follow topology change, the
O2O sets a timeout (e.g. 60s) to the inserted control-rules and at
the timeout expiration the dummy IP table is dumped again on
the OpenFlow Table.

1 Note that while an ARP or ARP-like mechanism could be viable to

learn the MAC addresses of one-hop nodes, the central controller
however needs to know all the associations between IP addresses
and MAC addresses of all network nodes.

OpenFlow switch
(Open vSwitch)

O2O

wlan0

br0
10.0.0.x

OLSR
daemon POX

OpenFlow
Controller

Wireless Mesh Router

eth0

Access
Network

eth1

Internet
Gateway

Control rules config

Figure 4. WMR architecture

In addition to the control-rules used to route OpenFlow
traffic, the flow tables are also filled with other control-rules
needed to support the OLSR operations. These rules are used to
forward the incoming OLSR packets to the OLSR daemon in
the WMR node and to let the outgoing OLSR packets exit from
the proper interfaces.

Data network
Let us now consider how to handle the traffic for IP

destinations outside the control-subnet, i.e. either to the access
networks or to the Internet. Assume that a packet is generated
in a host of the access network and destined to an Internet
address outside the wireless mesh network (but the same will
also apply to packets destined to a host of the access network
as this occurs when packets come back from the Internet or for
mesh internal communications).

The packet will be received by the WMR on its access
network interface. Then a match is searched in the flow table.
In case a match is found, the related action is carried out.
Otherwise, the IP packet is embedded in a OpenFlow packet-
in, which is transferred to the controller using the in-band
control network. When the controller receives the packet-in, it
applies the programmed routing logic, e.g. the one we describe
in section IV.

To support controller operations, the IP subnets of the
Access Networks are advertised by WMRs and gateway
WMRs by using OLSR Host and Network Association (HNA)
messages. Moreover, gateway WMRs also advertise the default
route 0.0.0.0/0. In doing so, each WMR node knows the full
network topology and the controller can inquiry the connected
WMR to learn this information, which is fundamental to
implement traffic engineering logic for data traffic.

Emergency conditions
Using standard OpenFlow means, the O2O module

periodically controls the liveliness of the controller. In case of
controller failure (e.g. due to hardware or communication
issue) the O2O enters in an emergency status during which it
removes all the rules inserted by the controller from the flow
table and dumps all the OLSR routing table, i.e. including the
routes outside the control-subnet and the default route
advertised by the gateways.

WMR
1

Public
Server

WMR
2

WMR
3

WMR
4

GW2

GW1

Controller

Internet

WMR
6

WMR
5

Clients
Clients

Clients

ADSL
10 Mbit/s down

1 Mbit/s up

802.11a
(54Mbit/s)

100 Mbit/s
Ethernet

Figure 5. Use-case scenario

In doing so the routing of the mesh becomes substantially
controlled by OLSR, while the forwarding is always carried
out through OpenFlow mechanisms. When the controller
becomes reachable, the O2O leaves the emergency status and
removes from the flow table the rules associated to routes
outside the control-subnet, thus forcing ongoing data flows to
send packet-in data units to the controller, which will decide
how to re-route them.

WMR architecture
The architecture of a WMR node in our scenario is shown

in Figure 4. It includes: one wireless interface belonging to the
Wireless Mesh Network (wlan0); an optional wired interface
towards client Access Networks (eth0); an optional wired
interface used as a gateway to the Internet (eth1); a virtual
interface br0, which is a software bridge using OpenFlow
switching logic, e.g. Open vSwitch [15]. A generic “real”
WMR node may have additional wireless or wired interfaces
towards client Access Network and additional wireless
interfaces can be bridged to br0 if a multi-channel WMR is
used.

The br0 interface has an IP address belonging to the
control-subnet, wlan0 does not have an IP address, eth0 has an
address of the Access Networks subnet and eth1 of the subnet
connected to the Internet. OLSR is connected to br0, and br0 is
used as destination for any packets generated by the node and
directed towards the WMR. To this aim we use the trick of
inserting in the main routing table of Linux a fake IP address
(e.g. 10.0.254.254) as gateway of all the routes whose outgoing
interface is br0 (i.e. of the routes directed toward the WMN).
To avoid ARP generation, we also statically insert in the ARP
table a fake MAC address for the fake IP address.

It is noteworthy that in this architecture we have two
different levels of controllers setting up OpenFlow rules: a
local distributed controller taking care of control-rules that is
the couple O2O and OLSR, and a remote centralized controller
taking care of rules for data traffic.

IV. USE-CASE: GATEWAY BALANCING
In this section we propose an application of the wmSDN

architecture in which OpenFlow switching is used to balance
traffic among the gateways of a Wireless Mesh Network. The
gateway balancing logic is implemented in the controller and
we show that external clients can fetch data from public servers
inside the wmSDN at a higher throughput, with respect to the
one they achieve using a WMN with only plain OLSR routing
and IP forwarding.

We consider the case of a WMN that is an Autonomous
System and uses its public address space to address internal
public servers (e.g. mail, web, video) The WMN also uses a
private address space to address private hosts, such as user
laptops or desktops. The WMN is connected to the Internet
through a set of WMRs acting as gateways, which also have a
BGP peering relation with the related access ISPs; i.e. the
WMN has a multi-homing configuration. This configuration is
rather common in Wireless Community Networks, like
Ninux.org in Italy or Guifi.net in Catalonia.

Figure 5 reports an example of such a configuration, in
which the WMN is formed by 6 WMRs, two of which are BGP
gateways and provide Internet access through an ADSL
connection with an uplink bandwidth of 1 Mbit/s. A public
server is connected to WMR 1 over Ethernet and clients
located on the Internet fetch data from this server.

In such scenarios, using plain OLSR IP routing in the
WMN implies that all the traffic sent from a server towards
Internet clients flows through the BGP gateway closest to the
server. Indeed, each gateway announces through OLSR the
default route (0.0.0.0/0) and OLSR inserts this default route in
the IP routing tables of WMRs by using a shortest path strategy
(or using Expected Transmission Count [13]). For instance, in
case of Figure 5 all the traffic between the public server and
the Internet clients flows through GW1, which is the gateway
closest to the server.

Using a wmSDN in these scenarios makes it possible to
carry out forwarding operations on a flow-basis and to route
different flows on different gateways in order to better exploit
the uplink capacity provided by all the mesh gateways. As a
proof of concept, we implemented a simple round robin
Gateway Selection Algorithm (GSA) for the OpenFlow
controller. The GSA pushes rules in the flow table of WMRs,
aimed at routing single data flows towards the selected GW. A
rule identifies a flow through a match criterion based on the
couple IP source and IP destination. The rule action is twofold:
i) to change the source MAC address with the MAC address on
the WMR node and the destination MAC address with the one
of the next-hop WMR in the path toward the selected GW; ii)
to forward the packet on the wireless interface toward the next
WMR of the path. The next-hop WMR computation is carried
out using the network topology, periodically learned by the
controller by contacting the OLSR JSONinfo plugin [13] of the
connected WMR (the WMR n.3 in case of Figure 5).

At the start of a new data flow the controller receives
OpenFlow packet-in messages from the WMRs, since they do
not know how to route a new flow. The controller assigns the
least recently assigned gateway to this flow, in a round robin

fashion. Then the controller pushes a rule in the flow table of
the requesting WMR.

Figure 6. Goodput of a TCP stream from the public server versus time, while
changing the total number of stream generated by the server: one new stream

at 20,40,60,80,100 s

For instance in case of Figure 5 when the public server with
IP address IP_S sends out the first packet P towards an Internet
client with IP address IP_A, WMR 1 does not know how to
forward this packet and sends P within an OpenFlow packet-in
message to the controller. The GSA algorithm selects GW1,
and pushes an entry in the flow table of WMR 1, whose match
condition is IP source address == IP_S and IP destination
address == IP_A, and whose action is to switch the source
MAC address with the one of WMR 1 and the destination
MAC address with the one of WMR 2 (which is the next-hop
WMR toward GW1) and then to send out the packets through
the wireless interface. The packet P is sent back from the
controller to WMR n.1, which uses the new rule to properly
forward it. The same procedure is repeated in all WMRs during
the travel of this packet towards GW1.

After the initial flow setup phase, all the remaining packets
of the data flow do not require any other interaction with the
controller. When the data flow ends, after a brief timeout an
OpenFlow switch automatically removes the related rule to
free flow tables from unused entries.

When a second flow towards a client with address IP_B
starts, the same flow setup procedure occurs, but the controller
assigns the gateway GW2 to the flow, maximizing the use of
the overall Internet uplink bandwidth of the mesh. Obviously,
in case of gateways with different uplink bandwidth the round
robin approach should be properly weighted.

To follow topology changes e.g. due to gateway or WMR
failures, every time that a topology change is detected by GSA
(through the JSONinfo plugin of OLSR), the controller forces
the removal of all the rules it has pushed in the WMRs flow
tables. In doing so, all the ongoing data flows will restart the
flow setup phase, which will now take into account the
changed topology. For example in the scenario of Figure 5,
assuming two active flows, one outgoing from GW1 and one
outgoing from GW2, in case of GW2 failure, the flow setup

procedures are restarted and both flows will be routed out
through GW1.

It is noteworthy that the described procedures are meant
neither to be optimal, nor to outperform other similar
approaches, like IP source routing or multipath transport
protocols. Indeed, the goal of this section is limited to show a
simple application of the wmSDN that improves performance
compared to a “plain” OLSR+IP WMN. Nonetheless, we argue
that even the more complex load balancing algorithm proposed
in the literature (e.g. [19][20]) can be implemented in a
wmSDN by a proper programming of the controller logic and
we leave this for further study.

Moreover, the rough approach of shutting down and setting
up again all the rules when a topology change occurs may
generate an excessive packet-in traffic or temporary lags in
packet delivery. Also this optimization aspect is left for further
study.

V. PERFORMANCE EVALUATION
We implemented the deployment framework and the

gateway balancing logic through Bash and Python scripts,
supported by Open vSwitch [15] and the POX controller [14].
We tested the related performance using an emulated
environment built with NS3, Linux containers and Core tools
[16][17], representing the network of Figure 5. The details of
the emulation environment are described in [18]. With respect
to Figure 5, in our emulated testbed we simply consider for the
Internet side one node with the two “ADSL” links toward
GW1 and GW2 and direct Ethernet links to a number (up to 6)
of Internet Clients. We do not run BGP and assume that all
packets generated by Internet clients access the mesh through
GW1. These packets are routed within the mesh on the shortest
path towards the server by rules pushed by the OpenFlow
controller during the flow setup phase. Packets generated by
the mesh public server are routed by the OpenFlow controller
on the shortest path towards the gateway selected by the
balancing logic.

Gateway Balancing Logic Performance
The first experiment we carried out is aimed to show the

performance of the gateway balancing logic, which is also a
functional proof of the proposed deployment framework. We
consider six Internet clients that receive data through (long-
lived) TCP connections, whose source is the public server
shown in Figure 5. The first client starts to fetch data at time 0,
while the other clients start at 20, 40, 60, 80, 100s respectively.

Figure 6 reports the goodput (useful data rate without
TCP/IP header) achieved by the first client if the WMN uses
OpenFlow and if the WMN uses plain IP forwarding and
OLSR routing. In the 0-20 s time interval the first client is
alone. In case of OpenFlow, the controller assigns the client
TCP flow to GW1, and thus the achieved goodput is close to
the GW1 uplink rate (1Mbit/s) minus the TCP/IP overhead. In
case of IP forwarding, OLSR routes this flow, as well as all the
other next ones, towards the gateway closest to the server
(shortest path strategy), which happens to be GW1 as well.
Therefore, in this single-flow case using OpenFlow or IP
forwarding does not change the achieved goodput.

During the 20-40s interval there are two flows. In case of
OpenFlow, the first flow is kept on GW1, while the second
flow is assigned to GW2 by the controller2. Consequently, the
presence of this second flow does not affect the goodput of the
first flow, being the network bottlenecks the gateway uplinks
rather than the wireless links. In case of plain IP forwarding
both flows are routed to GW1, thus the first flow halves its
goodput, since the uplink of GW1 is now shared by two flows.

During the 40-60 s interval there are three flows. In case of
OpenFlow, the first and the second flow are kept to GW1 and
GW2 respectively, and the third flow is assigned to GW1 by
the controller. Consequently, the first and the third flow now
share the uplink of GW1 and goodput of GW1 is close to the
half of the GW1 uplink. In case of IP forwarding, all flows are
routed on GW1, thus goodput of first flow is reduced to about a
third of GW1 uplink capacity.

Generalizing the analysis we see that in case of OpenFlow
we are able to exploit all the gateways, thus the goodput of the
first flow decreases when two new flows are added, being the
two gateways assigned to flows in a round robin fashion.
Conversely, the plain OLSR+IP solution uses a single gateway
and so the goodput of the first flow decreases at the start of
each new flow. Moreover, in cases of more than one flow, the
overall traffic sent out by the server using SDN is about 2
Mbit/s, while using OLSR+IP it is only 1 Mbps.

Gateway Fault Handling
In the second reported experiment we verify the

effectiveness of the gateway balancing logic to handle gateway
faults. We consider two TCP flows directed to two Internet
clients and whose source is the public server in the WMN. The
flows start at time t=0 s, and during the interval 180-360s the
gateway GW2 is faulty (WiFi interface off).

Figure 7 reports the goodput of the two flows during the
experiment. When flows start, the controller assigns flow n.1 to
GW1 and flow n.2 to GW2. Therefore the goodput of the two
flows is close to the ADSL uplink rate, i.e. 1 Mbit/s. At 180s,
GW2 fails and the flow n.2 has a brief interruption up to the
time when the controller detects the topology change using
OLSR; in our OLSR configuration this latency is about 10
seconds. After the detection of the topology change, the
controller removes all rules injected in the flow tables of the
WMRs, forcing a new flow setup phase that ends up in re-
routing all flows to GW1. From now on, both flows share the
same gateway GW1 and hence the goodput halves. At time t =
360s the GW2 failure ends, after about 10 seconds the
controller detects a topology change and finally re-routes flows
on two separate gateways. The goodput of the flows become
again close to 1 Mbit/s.

Controller Failure Handling
The third experiment we carried out aims to show the

effectiveness of O2O module in handling controller failures.
We consider two TCP flows directed to two Internet clients
and whose source is the public server. The flows start at time 0,

2 TCP ACK sent by clients however enters the mesh from GW1. In

fact this gateway is chosen by BGP.

and during the period 40-80s the controller has an outage that
we simulate by shutting down the related POX process.

Figure 7. Goodput of two TCP streams vs. time. During the interval 180-360s

the gateway GW2 has an outage.

Figure 8. Goodput of two TCP streams generated by a public server of the

WMN vs. time. In the interval 40-80s the controller has an outage.

Figure 8 reports the goodput of the two flows. In the
interval 0-40 the controller is up, one flow is assigned to GW1
and the other flow is assigned to GW2. During the controller
outage period, the O2O module removes the rules set by
controller and dumps the whole set of OLSR routes (including
the default 0.0.0.0/0) in the flow table. Thus both flows are sent
out through GW1 and the related goodputs halve. It is
noteworthy that the delay between the controller failure instant
and the actual reaction of O2O module is about 10 s and this is
due to the timeout we configure to check the controller, i.e. 15
s. At t = 80s, the controller outage period ends, after about 10s
the O2O module detects the presence of the controller and then
removes from the flow tables the previously inserted OLSR
routes that do not concern the control subnet. Consequently a
flow setup phase occurs, in which the GSA algorithm in the
controller assigns a flow to a gateway and another flow to the

another gateway, and performances become again equal to the
ones achieved at the start of the test.

VI. CONCLUSIONS
Wireless Mesh Networks may benefit from the flexibility

and the simple management provided by the Software Defined
Networking paradigm, implemented by OpenFlow. The use of
wireless resources can be optimized by a central server, which
can reason and perform processing actions on multiple levels
of the protocol stack.

We proposed a solution to integrate SDN functionality in a
Wireless Mesh, trying to face the reliability concerns related to
this environment. The proposed wmSDN approach integrates
“ready-to-market” technologies. Indeed it exploits OLSR,
Linux based OpenFlow tools and our scripts that could be
easily deployed in Linux-based wireless IP routers, typically
operating in actual Wireless Mesh (Community) Networks.

REFERENCES
[1] “Freifunk: non commercial open initiative to support free radio

networks in the German region,” http://www.freifunk.net/.
[2] “Funkfeuer free net,” http://www.funkfeuer.at/.
[3] “Ninux.org wireless community network,” http://ninux.org/.
[4] “Guifi.net,” http://guifi.net/en.
[5] McKeown, N. et al.; OpenFlow: enabling innovation in campus

networks, ACM SIGCOMM Comp. Comm. Review, Vol.38, No.2, 2008
[6] P Dely, A Kassler, N Bayer, “OpenFlow for Wireless Mesh Networks”,

IEEE International Workshop on Wireless Mesh and Ad Hoc Networks
(WiMAN 2011), Hawaii, USA, August 2011

[7] M. Mendonca, K. Obraczka, and T. Turletti, “The case for software-
defined networking in heterogeneous networked environments”, ACM
conference on CoNEXT student workshop, 2012.

[8] S. Hasan, Y.B. David, R.C. Scott, E. Brewer, S. Shenker, "Enabling
Rural Connectivity with SDN", Technical Report No. UCB/EECS-2012-
201

[9] J. Ahrenholz, C. Danilov, T. R. Henderson, J. H. Kim, “CORE: A real-
time network emulator”, IEEE Military Communications Conference,
MILCOM 2008.

[10] H. Tokito, M. Sasabe, G. Hasegawa, H. Nakano, “Achieving Load
Balancing in Wireless Mesh Networks Through Multiple Gateways”,
Eight International Conference on Networks, 2009

[11] The OpenFlow Consortium, “OpenFlow website.” [Online]. Available:
http://www.openflowswitch.org/wp/downloads/

[12] T. Clausen , P. Jacquet , “Optimized Link State Routing Protocol”, IETF
RFC3626

[13] A. Tonnesen and T. Lopatic and H. Gredler and B. Petrovitsch and A.
Kaplan and S.O. Tuecke, “olsrd Website,” URL: http://www.olsr.org/

[14] POX controller website: http://www.noxrepo.org/
[15] Open vSwitch website: http://openvswitch.org/
[16] “HOWTO Use Linux Containers to set up virtual networks”,

http://www.nsnam.org/wiki/index.php/HOWTO_Use_Linux_Containers
_to_set_up_virtual_networks

[17] Common Open Research Emulator (CORE) home page,
http://cs.itd.nrl.navy.mil/work/core/

[18] wmSDN Web site: http:// netgroup.uniroma2.it/wmSDN

[19] Devu Manikantan Shila, Tricha Anjali, “Load aware traffic engineering
for mesh networks”, Computer Communications, Volume 31, Issue 7, 9
May 2008, Pages 1460-146

[20] S. Waharte, B. Ishibashi, R. Boutaba, D. Meddour,” Interference-aware
routing metric for improved load balancing in wireless mesh networks”,
IEEE ICC 2008

