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Introduzione

Il fenomeno delle reti comunitarie (community networks) si sta di�ondendo,

di recente, in tutto il mondo. Queste reti, spesso basate su tecnologie senza

�li a basso costo e di solito nate dall'iniziativa di volontari tecnicamente

preparati, si stanno evolvendo, in alcuni luoghi, in infrastrutture critiche

per l'istruzione e le imprese.

Tipicamente, l'infrastruttura di una rete comunitaria ha molti proprieta-

ri e amministratori, in contrapposizione con il modello classico degli Internet

Service Provider, in cui l'infrastruttura �e posseduta e gestita da un singolo

ente. La coordinazione tra gli amministratori di una rete comunitaria �e mi-

nimale e talvolta limitata alla sola allocazione degli indirizzi IP, in maniera

simile a ci�o che avviene nella rete Internet a livello di Autonomous System.

Il protocollo OLSR (Optimized Link State Routing) per reti mobili ad-

hoc (MANETs) �e uno dei protocolli di routing pi�u utilizzati dai membri delle

reti comunitarie.

Crescendo e sviluppandosi, queste reti possono essere bersaglio di diversi

tipi di attacchi, facendo emergere la necessit�a di meccanismi di protezione

dell'infrastruttura. Qualsiasi scelta progettuale riguardante tali meccanismi

deve tenere presente la mancanza di una forte coordinazione tra gli ammi-

nistratori della rete, cos�� come la natura eterogenea e decentralizzata delle

reti comunitarie. Per questa ragione le soluzioni esistenti che fanno a�-

damento su un'amministrazione centralizzata, come le soluzioni basate su

segreti condivisi tra i nodi della rete, devono essere scartate o modi�cate

sostanzialmente.
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In questo scenario, il tra�co degli utenti potrebbe essere protetto da

alcuni attacchi, come intercettazioni o furto di identit�a, mediante l'utilizzo

di crittogra�a end-to-end, come quella fornita dal protocollo TLS. L'infra-

struttura di routing, cio�e i pacchetti relativi al protocollo di routing, devono,

per�o, essere protetti in altri modi, ad esempio tramite l'utilizzo di crittogra-

�a a chiave pubblica e di sistemi di reputazione. Uno standard largamente

accettato in entrambi questi campi �e rappresentato da PGP (Pretty Good

Privacy, da cui �e stata derivata la speci�ca OpenPGP) e dal suo modello

di web of trust (rete di �ducia). In tale modello, gli utenti PGP certi�cano

l'identit�a di altri utenti PGP �rmando crittogra�camente le loro chiavi pub-

bliche. Quindi, basandosi su questo e su altre informazioni, quali la data di

scadenza delle chiavi, un livello soggettivo di �ducia pu�o essere calcolato da

ogni utente PGP per ogni altro utente PGP, inclusi gli utenti sconosciuti.

Dunque tra gli utenti si costruisce una \rete di �ducia": un sistema di re-

putazione decentralizzato, contrapposto alle infrastrutture a chiave pubblica

(PKIs) gerarchiche, le quali si a�dano ad entit�a centrali come le Certi�cation

Authority (CA).

Partendo da queste considerazioni e dalle soluzioni esistenti, in questa

tesi �e progettata e presentata la Web of Trust OLSR Extension, un'e-

stensione del protocollo OLSR che mira a proteggere l'infrastruttura delle

reti multi-amministrate, in particolare le reti comunitarie, da alcuni tipi

di attacchi, quali furto di identit�a, immissione di false informazioni dal-

l'esterno e attacchi di ripetizione, utilizzando �rme digitali hop-by-hop nei

pacchetti di controllo di OLSR, ed un appropriato meccanismo di scambio

dei timestamp.1

Per di pi�u, mentre il routing tradizionale basa le sue decisioni sul campo

\destination" dei pacchetti IP in arrivo, alcuni sistemi operativi sono dotati

di un meccanismo chiamato policy based routing, che permette di prendere

decisioni di instradamento basandosi su altri campi dei pacchetti IP. Nel

1 L'estensione non �e basata su orologi sincronizzati, ma assume che la di�erenza tra gli

orologi a bordo dei nodi rimanga, con una certa tolleranza, costante.
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kernel Linux questa caratteristica �e implementata dal Routing Policy Data-

base (RPDB), che permette di speci�care vari tipi di regole e l'utilizzo di

diverse tabelle di instradamento.

LaWeb of Trust OLSR Extension utilizza il policy based routing per ag-

giornare parallelamente diverse tabelle di instradamento, ognuna corrispon-

dente ad un diverso livello di �ducia, al momento della veri�ca della �rma

dei pacchetti OLSR ricevuti. La scelta della tabella di instradamento appro-

priata �e basata sul livello di �ducia nei confronti del mittente del pacchetto.

Livello di �ducia che l'amministratore del nodo calcola soggettivamente, uti-

lizzando il modello del web of trust. Combinando queste tabelle con le regole

appropriate, il tra�co degli utenti pu�o seguire percorsi corrispondenti ai di-

versi livelli di �ducia, delineando delle reti virtuali sovrapposte alla topologia

reale.

La Web of Trust OLSR Extension �e sviluppata come plug-in dell'im-

plementazione, molto utilizzata nelle reti comunitarie, del protocollo OLSR

dello UniK University Graduate Center di Oslo. Inoltre il plug-in �e stato

testato in un ambiente emulato.

Struttura della tesi

Nel primo capitolo viene presentato il protocollo OLSR ed alcune questioni

relative alla sua sicurezza. Successivamente, nel capitolo 2 viene fornita una

presentazione delle reti multi-amministrate, in particolare delle reti comu-

nitarie, seguita dalla spiegazione relativa a PGP ed al suo modello di web of

trust nel capitolo 3, e da quella relativa al policy based routing nel capitolo 4.

I capitoli 5 e 6 illustrano la Web of Trust OLSR Extension, l'estensione

del protocollo OLSR progettata e sviluppata per questa tesi, inclusa la sua

implementazione e la successiva fase di test.

Le considerazioni �nali sul lavoro svolto e sul lavoro futuro, contenute

nel capitolo 7, sono completate con un articolo, derivato da questa tesi e

riportato nell'appendice A. Questo attualmente si trova in fase di elabora-
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zione per essere inviato alla conferenza \IEEE International Conference on

Communications 2009".

La presente tesi �e stata svolta esternamente presso il Dipartimento di

Ingegneria Elettronica dell'Universit�a degli Studi di Roma Tor Vergata.
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Introduction

The community networks phenomenon is spreading, in recent years, all over

the world. These networks, often based on low-cost wireless technologies

and usually born from the initiative of technically skilled volunteers, are

becoming, in some localities, critical infrastructures for education and busi-

ness.

Typically, a community network infrastructure has several owners and

administrators, as opposed to classic Internet Service Provider models, in

which the infrastructure is owned and managed by a single organization.

Coordination between community network administrators is minimal, and

is sometimes limited to IP addresses allocation, in a way that resembles the

Internet at the Autonomous System's level.

One of the most popular routing protocols employed in community net-

works is represented by the Optimized Link State Routing (OLSR) protocol

for mobile ad hoc networks (MANETs).

As these networks grow and develop, they may become target of various

threats, and thus the need for security emerges. Any design choice of a pro-

tection mechanism must take into account the lack of strong coordination

between network administrators, as well as the heterogeneous and decen-

tralized nature of community networks. For this reason existing solutions

that rely on a centralized administration, such as solutions based on shared

secrets between network nodes, must be discarded or substantially modi�ed.

In this scenario, user tra�c may be protected from some attacks, such as

eavesdropping and identity spoo�ng, by using end-to-end encryption like the
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one provided by TLS, but the routing infrastructure, i.e. the routing protocol

packets, must be secured by other means. Public key cryptography as well

as reputation systems have to come into play. A widely accepted standard in

both of these areas is represented by Pretty Good Privacy (PGP, from which

the OpenPGP speci�cation is derived) and its web of trust model. In this

model, PGP users certify the identity of other PGP users by cryptographi-

cally signing their public keys. Then, based on this and other information,

such as key expiration dates, a subjective level of trust may be computed

by each PGP user for every other PGP user, including strangers. So a web

of trust is created: a decentralized reputation system, as opposed to hierar-

chical Public Key Infrastructures (PKIs), that rely on central entities such

as Certi�cation Authorities (CAs).

Departing from these considerations, and from the existing solutions, the

Web of Trust OLSR Extension is devised and presented in this thesis. It

aims at protecting the networking infrastructure of multi-administered net-

works, especially community networks, from some threats, such as identity

spoo�ng, link spoo�ng and replay attacks, by using hop-by-hop OpenPGP

signatures in OLSR control packets, and an appropriate timestamp exchange

mechanism2.

Moreover, some operating systems provide a feature called policy based

routing : the ability to take routing decisions on incoming tra�c based on

�elds of the IP packets di�erent from the usual \destination" �eld. In the

Linux kernel this feature is implemented by the Routing Policy Database

(RPDB), which permits the speci�cation of multiple rules and the use of

several routing tables.

The Web of Trust Extension uses policy based routing to update multi-

ple routing tables, each corresponding to a di�erent level of trust, upon the

reception of an OLSR packet and the veri�cation of its signature. The selec-

tion of the appropriate routing table is based on the subjective trust value

2The extension does not rely on synchronized time, but assumes that the time di�erence

between network node's clocks remains constant, with some tolerance.
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computed, using the web of trust model, by the receiving node's adminis-

trator with respect to the OLSR packet originator. Combining the routing

tables with the appropriate rules, user tra�c is able to follow network paths

corresponding to di�erent levels of trust, drawing virtual networks overlaid

to the real network topology.

The extension is implemented as a plugin of the UniK OLSR Implemen-

tation (olsrd), popular among community network members. Subsequently

some tests are performed in an emulated environment.

Structure of the Thesis

In chapter 1, an introduction to OLSR and related security issues will be

presented. Then, in chapter 2, an overview of multi-administered networks,

and especially community networks, is provided, followed by an explanation

of PGP and its web of trust model, in chapter 3, and of policy based routing

and the Linux RPDB in chapter 4.

In chapter 5 and chapter 6 the Web of Trust OLSR Extension, devised

for this thesis, is illustrated, along with its implementation and testing.

The �nal considerations on past and future work in chapter 7 are com-

pleted with an article, derived from this thesis and reported in appendix A,

that at the time of this writing is in the process of being completed and

submitted for the IEEE International Conference on Communications 2009.
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Chapter 1

Securing the OLSR Protocol

In this chapter, the OLSR protocol for Mobile Ad Hoc Networks (MANETs)

is introduced, along with some security related issues. Then, in section 1.3

the \Secure extension to the OLSR protocol" [2] is presented, which, using

a shared secret to sign control packets, prevents some attacks to the routing

infrastructure. This will be the basis for the \Web of Trust extension",

described in section 5.1.

1.1 Optimized Link State Routing (OLSR)

The Optimized Link State Routing protocol (OLSR), described in IETF

RFC 3626, is a popular networking protocol developed for mobile ad hoc

networks. It is a proactive protocol and, as the name suggests, is based on

Link State routing. OLSR does not rely on any central entity nor makes

any assumption on the underlying link-layer protocol, is aware of asymmetric

links but does not exploit them, and uses an optimization technique called

Multipoint Relaying (MPR) to di�use messages in the network.

RFC 3626 modularizes the protocol into a core functionality and a set

of auxiliary functions.

1



CHAPTER 1. SECURING THE OLSR PROTOCOL

1.1.1 Core Functionality

The core functionality is required for OLSR to operate and to provide rout-

ing in a stand-alone MANET.

Basic Packet Format

0 31

Packet Length Packet Sequence Number

Message Type Vtime Message Size

Originator Address

Time To Live Hop Count Message Sequence Number

MESSAGE

Message Type Vtime Message Size

Originator Address

Time To Live Hop Count Message Sequence Number

MESSAGE

...

Figure 1.1: Basic OLSR Packet Format

OLSR packets are contained in UDP datagrams using IANA assigned

port 698, and have the general format described in �gure 1.1, where:

� Packet Length expresses the length of the packet, in bytes;

� Packet Sequence Number is incremented by one for each transmit-

ted packet and is maintained separately for each OLSR interface1.

1An OLSR interface is a network interface participating in an OLSR MANET.
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CHAPTER 1. SECURING THE OLSR PROTOCOL

OLSR messages, which may be of various types, are contained in the rest

of the packet. All message types share a common header, with the following

�elds:

� Message Type speci�es the type of the message;

� Vtime indicates the length of the validity time regarding the infor-

mation contained in the message;

� Message Size speci�es the size of the message;

� Originator Address is theMain Address2 of the node that generated

the message;

� Time To Live contains the maximum number of times that a message

must be forwarded over the network, and is decremented at every hop;

� Hop Count is incremented at every hop;

� Message Sequence Number is a number that is unique for each

message and is assigned by the originator node.

Multiple Interface Declaration (MID) Messages

When a node has multipleOLSR interfaces participating in an OLSRMANET,

the association between its Main Address (see note 2 on page 3) and the

addresses of all its OLSR interfaces must be announced to the other nodes

in the network. This is accomplished through Multiple Interface Declaration

(MID) messages, whose format is shown in �gure 1.2.

The OLSR Interface Address �eld contains the address of an OLSR

interface associated to the Main Address indicated in the Originator Ad-

dress �eld.

2The Main Address is an IP address that a node must choose as its node id among all

the available addresses on all OLSR interfaces.
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CHAPTER 1. SECURING THE OLSR PROTOCOL

0 31

MID MESSAGE Vtime Message Size

Originator Address

Time To Live Hop Count Message Sequence Number

OLSR Interface Address

OLSR Interface Address

...

Figure 1.2: MID Message Format

Multipoint Relays (MPR)

Classical 
ooding (i.e. forwarding of received messages to all neighbors) is

very expensive in terms of bandwidth. That's why OLSR uses Multipoint

Relaying : an optimization obtained by avoiding redundant retransmissions.

To achieve this, each node selects among its symmetric 1-hop neigh-

borhood3, considering their willingness4, some nodes as Multipoint Relays

(MPRs), so that each 2-hop neighbor5 can be reached through an MPR.

The set of MPRs selected by node X is called the MPR set of X. Nodes

that are in the MPR set of other nodes have the responsibility of forwarding

their messages.

HELLO Messages

HELLO messages are used for the purpose of link sensing, neighborhood

detection and MPR selection. Emitted at �xed time intervals, contain in-

formation about the status of the node's links and neighbors. Their format

is shown in �gure 1.3.

� HTime speci�es the size of the time interval between emissions of

subsequent HELLO messages;

3The symmetric 1-hop neighborhood of a node is the set of nodes which have at least

one symmetric link with the node itself.
4Willingness is explained at page 6.
5A 2-hop neighbor is a node heard by a neighbor.
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CHAPTER 1. SECURING THE OLSR PROTOCOL

0 31

HELLO MESSAGE Vtime Message Size

Originator Address

Time To Live Hop Count Message Sequence Number

Reserved Htime Willingness

Link Code Reserved Link Message Size

Neighbor Interface Address

Neighbor Interface Address

...

Link Code Reserved Link Message Size

Neighbor Interface Address

Neighbor Interface Address

...

...

Figure 1.3: HELLO Message Format

5



CHAPTER 1. SECURING THE OLSR PROTOCOL

� Willingness indicates, with a number between 0 (WILL NEVER) and 7

(WILL ALWAYS), the willingness of the node to carry and forward tra�c

for other nodes;

� Link Code speci�es information about the link (asymmetric, symmet-

ric, lost, . . . ) and neighbor (symmetric neighbor, MPR, . . . ) whose

interface is indicated in the associatedNeighbor Interface Address

�elds;

� Link Message Size is the distance, in bytes, measured between two

subsequent Link Code �elds (or the end of the message).

Topology Control (TC) Messages

In Link State routing, each node spreads information about its neighbors

over the whole network. In OLSR this task is achieved by Topology Control

(TC) messages, whose format is shown in �gure 1.4.

0 31

TC MESSAGE Vtime Message Size

Originator Address

Time To Live Hop Count Message Sequence Number

ANSN Reserved

Advertised Neighbor Main Address

Advertised Neighbor Main Address

...

Figure 1.4: TC Message Format

� Advertised Neighbor Sequence Number (ANSN) is incremented

every time the node's neighbor set changes;

� Advertised Neighbor Main Address contains the main address of

a neighbor node.

6



CHAPTER 1. SECURING THE OLSR PROTOCOL

If TC Redundancy (see subsection 1.1.2, page 8) is not used, TC mes-

sages are emitted by MPR nodes only.

1.1.2 Auxiliary Functions

The purpose of the auxiliary functions of OLSR is to add functionalities

that may be applicable to speci�c scenarios. Their separation from the core

functionality aims at keeping the protocol as simple as possible while adding

complexity only when needed.

Host and Network Association (HNA) Messages

When a node has some network interfaces participating in an OLSRMANET

and other interfaces which do not, it may be desirable to inject routing

information in OLSR. Host and Network Association (HNA) messages serve

for this task. Their format is displayed in �gure 1.5.

0 31

HNA MESSAGE Vtime Message Size

Originator Address

Time To Live Hop Count Message Sequence Number

Network Address

Netmask

Network Address

Netmask

...

Figure 1.5: HNA Message Format

The Network Address and Netmask pair of �elds specify the non-

OLSR networks' data to be injected inside an OLSR MANET.
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CHAPTER 1. SECURING THE OLSR PROTOCOL

Link Hysteresis

To prevent unstable links (not rare over the wireless medium) from having

consequences on the stability of the information maintained by OLSR nodes

or even a�ect the routing process, the Link Hysteresis mechanism may be

applied.

It uses an upper and a lower threshold on the link quality. Asymmetric

links may be considered by the protocol as symmetric only when their link

quality is greater than the upper threshold, while symmetric links may be

considered asymmetric only when their link quality is less than the lower

threshold. In this way a delay is introduced in the link sensing process, but

greater stability is achieved.

TC Redundancy

By using the TC Redundancy mechanism, the robustness of the network

topology information is increased. When an OLSR node parameter, called

TC REDUNDANCY:

� is 0, then the node includes in TC messages only the links with its

MPR selector set6;

� is 1, then the node includes in TC messages the links with its MPR

selector set and with its MPR set ;

� is 2, then the node includes in TC messages all of its symmetric neigh-

bors.

MPR Redundancy

Optimization achieved by Multipoint Relaying may be traded o� with more

robustness with respect to topology changes by increasing the number of

selected MPRs per node. This can be useful, for example, in mobile envi-

ronments, where may be desirable to have the reachability of a node ad-

vertised by more nodes. A parameter called MPR COVERAGE a�ects the

6The MPR selector set of a node is constituted by the nodes that selected it as MPR.
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MPR selection process by specifying through how many MPRs every two-

hop neighbor should, if possible, be reached.

1.2 Security of OLSR

This section focuses on the security of the OLSR protocol control messages,

without taking into consideration user tra�c, which may be protected and

authenticated by other means (for example by employing TLS [3]).

In RFC 3636 no security measures are speci�ed for OLSR. However,

some security considerations are made on:

� con�dentiality: to protect topological information from eavesdrop-

ping, PGP or symmetric encryption may be performed on control traf-

�c;

� integrity: message authentication is recommended, in order to avoid

injection of invalid control tra�c.

In [4] and [1], the security of OLSR infrastructures is further explored.

Vulnerabilities of proactive routing protocols are represented in an attack

tree [5] similar to the one in �gure 1.6. Some of these attacks are:

� jamming: in a wireless ad-hoc network a node may generate a massive

amount of interfering radio transmissions. This cannot be prevented

at the routing protocol level;

� incorrect control tra�c generation: by e.g. identity spoo�ng or

link spoo�ng;

� incorrect control tra�c relaying: if control messages are not prop-

erly relayed, connectivity losses may result.

The \Web of Trust Extension" described in section 5.1 aims at countering

the attacks denoted by a gray background in the OLSR attack tree reported

in �gure 1.6, i.e. replay attacks and generation of incorrect control messages.

More security considerations are included in section 5.2.

9
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Figure 1.6: OLSR Attack Tree [1]. Non-leaf nodes represent goals, arrows

departing from the same node represent di�erent ways to achieve the same

goal, and leafs represent the actual attacks. Gray leafs represent the attacks

countered by the \Secure Extension to the OLSR Protocol" (x section 1.3)

and the \Web of Trust OLSR Extension", object of this thesis (x chapter 5).
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1.3 A Secure Extension to the OLSR Protocol

The \Web of Trust OLSR Extension" described in section 5.1 is based on

the \Secure Extension to the OLSR Protocol" by Hafslund, T�nnesen et

al., presented in [2] and implemented as an olsrd plugin; hence is here sum-

marized. It should be noticed that by using a shared secret, this extension

is not suitable for multi-administered networks with weak coordination be-

tween node administrators (x chapter 2).

The extension described in [2] provides integrity for OLSR control mes-

sages through digital signatures obtained using a symmetric key shared be-

tween the nodes of an OLSR MANET. No con�dentiality or integrity for

user tra�c is provided.

Control tra�c is signed by every forwarding hop, thus the assumption

made is that each forwarder trusts the previous forwarder and the source of

the message7.

To prevent replay attacks, timestamps are used and a timestamp ex-

change mechanism is introduced. Time between nodes is not assumed to be

synchronized, but relatively synchronized i.e. running with relatively equal

frequency.

0 31

Message Type Vtime Message Size

Originator Address

Time To Live Hop Count Message Sequence Number

Scheme Algorithms Reserved

Timestamp

Signature (160 bits)

Figure 1.7: Secure OLSR basic signature message

OLSR is extended with four new message types. Figure 1.7 shows the

7This assumption is straightforward, as all nodes share a common secret.
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basic signature message, where:.

� Scheme - speci�es the scheme used for the signature;

� Algorithms - speci�es the algorithms used for the signature;

� Timestamp - is used to prevent replay attacks;

� Signature - is obtained as the hash of all the �elds of the OLSR

packet that precede the signature �eld itself plus the shared key, i.e.

{ the OLSR packet header,

{ all OLSR messages in the packet except the signature message,

{ the header of the signature message, the sub header and the

timestamp,

{ the shared key.

The basic signature message must be the last message in the packet.

Message sequence numbers used in OLSR messages are not enough to

prevent replay attacks, as:

� with 16 bits wrap-around is too frequent;

� an attacker could record one-hop tra�c sent by a node and play it

back in an area where it has never been heard.

Therefore 32-bit timestamps are used and exchanged upon connection through

a three-way handshake made of a challenge message (�gure 1.8), a challenge-

response message (�gure 1.9), and a response-response message (�gure 1.10).

The three messages are self-signed in order to separate the validation of

the signature message from the timestamp exchange mechanism, which is

likely to take place between neighbors that have no registered timestamp of

each other. The handshake between nodes A and B can be schematized in

this way:

1. challenge: A! B : ChaD(M;K);

12
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0 31

Message Type Vtime Message Size

Originator Address

Time To Live Hop Count Message Sequence Number

Destination

Random value "challenge"

Signature (160 bits)

Figure 1.8: Secure OLSR timestamp exchange challenge message

2. challenge-response: B ! A : ChbTsbD(IPb; Cha;K)D(M;K);

3. response-response: A! B : TsaD(IPa; Chb;K)D(M;K);

where:

� Chx is a 32-bit nonce generated by node X;

� D(d1; d2; : : :) the digest of the concatenation of d1; d2; : : :;

� Tsx the timestamp of node X;

� IPx the main address of node X;

� M the entire message;

� K the shared key.

Hence, the timestamp exchange begins with node A sending a digitally

signed challenge message containing a 32-bit nonce. B receives the challenge

message from A, generates the digest of its IP address, the received nonce

and the shared key, sends a new 32-bit nonce along with its timestamp and

digitally signs and sends the challenge-response message. When A receives

the challenge-response message from B, tries to verify the data; if it fails

discards the message, else computes the di�erence between its timestamp

and B's and records it. Then A generates a response-response message with

13
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0 31

Message Type Vtime Message Size

Originator Address

Time To Live Hop Count Message Sequence Number

Destination

Random value "challenge"

Timestamp

Response Signature (160 bits)

Signature (160 bits)

Figure 1.9: Secure OLSR timestamp exchange challenge-response message

its timestamp, a digest of its IP address, a digital signature, and sends it

to B. B veri�es the data sent by A, and if it succeeds, uses the timestamp

received to calculate the di�erence with its timestamp and record it.

After the timestamp exchange, di�erence between timestamps is calcu-

lated for every received signature message. If the recorded di�erence for

the sender is TN , a received signature message is valid if the di�erence T0

between the local timestamp TL and the timestamp TR received in the mes-

sage (i.e. T0 = TL � TR), veri�es T0 = TN + S or T0 = TN � S, where S is a

certain allowed slack.

In order to avoid a Denial of Service (DoS) attack, obtained by sending

a big number of challenge messages with the aim of overloading the network

and the processing units of the nodes, a timer is used. When a challenge

message originating from a node X is received, a timer for X is set, and

while the timer has not timed out, challenge messages originating from X

are discarded before veri�cation.
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0 31

Message Type Vtime Message Size

Originator Address

Time To Live Hop Count Message Sequence Number

Destination

Timestamp

Response Signature (160 bits)

Signature (160 bits)

Figure 1.10: Secure OLSR timestamp exchange response-response message

1.4 The UniK OLSR Implementation (olsrd)

Many RFC 3626 compliant implementations of the OLSR protocol exist. For

this thesis the UniK OLSR Implementation, also known as olsrd, initially

developed by Andreas T�nnesen at the UniK University Graduate Center

of the University of Oslo, and described in [6], was chosen. The choice was

determined by this implementation's:

� modularity - new plugins can be added without changing the main

codebase;

� license - the source code is released under a BSD-style license8 [8],

i.e. it is freely available and modi�able;

� popularity - it is used by many community networks9, who also ac-

tively contribute to test, extend and enhance it;

� portability - written in pure C, runs on a wide range of hardware

platforms (i386, ARM, MIPSEL, ...), including embedded devices, and

8Originally olsrd was released under the GNU Public License [7].
9See section 2.1, page 18.
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Figure 1.11: The Secure OLSR plugin design.

operating systems (GNU/Linux, Mac OS, OpenWRT, *BSD, Win-

dows, . . . ).

� performance: very low CPU time usage and high scalability.

Olsrd is maintained at the olsr.org website and has evolved into the

OLSR-NG [10] project, aimed at making \olsrd into a rock solid product

and a great routing daemon with high scalability"10.

1.5 Implementation of the OLSR security exten-

sion

The Secure Extension to the OLSR protocol [2] is implemented as an olsrd

plugin, using the SHA-1 hashing algorithm11 [12], or MD512 [13].

The plugin intercepts incoming tra�c in order to verify eventual signa-

tures. Timestamp exchange messages are processed before signature mes-

sages. After successful veri�cation of a signature message, this is removed,

10http://www.olsr.org/?q=background
11Through the OpenSSL library [11].
12Included, no dependencies needed, thus suited for embedded devices.
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the Packet Length �eld is updated13, and the packed is passed on to the

other olsrd components for further processing. If signature veri�cation fails

the packet is discarded.

Records of registered timestamps are maintained by each Secure OLSR

node. When a host receives a signature message from a node for which has

no registered timestamp, the timestamp-exchange process is initiated.

13The signature's Message Size is subtracted from the Packet Length.
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Chapter 2

Multi-administered networks

This chapter describes, in order to better understand the problems that

this work addresses, the context in which the OLSR Web of Trust exten-

sion, described in section 5.1 and object of this thesis �nds its application:

multi-administered networks, with weak coordination between administra-

tors. The most concrete example of such networks is represented by com-

munity networks, introduced below.

2.1 Community Networks

Since the �rst years of 2000, the social phenomenon1 of community networks

has emerged all over the world. These grassroots networks, initially built

spontaneously by skilled volunteers, have become critical infrastructures for

some business models [15, 16] and education [17].

One of the characteristic features of community networks is that the

infrastructure is owned and managed (tough owner and administrator of-

ten coincide) by several entities, which act both as end users and service

providers, as opposed to traditional service providers, who exclusively own

and manage their networking infrastructures. The motivations that drive

the phenomenon of community networks are various:

1Born from the Seattle Wireless Idea [14].
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� low cost of hardware, most notably of IEEE 802.11a/b/g compliant

devices. Moreover some components (such as antennas), may be self-

constructed from recycled material (e.g. co�ee cans);

� low cost of deployment, especially if wireless technologies are em-

ployed;

� narrow the digital divide: some areas, such as rural or mountain-

ous, are not pro�table for traditional ISPs, because the morphology of

the terrain and the population density lead to high deployment and

maintainment costs in the last mile, not counterbalanced by a (quan-

titatively) low demand for Internet connectivity [18] [19, 17, 20, 21];

� learn, experiment, have fun and share knowledge, sometimes

in collaboration with universities or enterprises, in a way similar to

what happens for FLOSS (Free/Libre/Open Source Software), which

is also frequently used to run and manage community networks [22,

23, 14, 21, 24];

� political or social reasons: bypass the traditional ISPs to avoid

censorship, logging; and tracking [25] or simply to achieve horizontal,

nonhierarchical communication.

Even if any available technology is used for the deployment of these

networks, wireless links are prevalent, and so the expression \wireless com-

munity network" is often employed. For the same reason the routing pro-

tocols used in these networks have to be suitable for the wireless medium,

or, better, to mixed mediums, like OLSR, AODV [26], B.A.T.M.A.N. [27]

or BGP [28, 21].

Usually, community network members provide, along with Internet ac-

cess, local (intranet) services, such as voice over IP, DNS, gaming, �le shar-

ing, Web pages, weather stations, to other community members.

Community networks focused on experimentation and knowledge sharing

have developed their own solutions, by modifying Linux distributions [29,
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30], extending2 or developing brand new protocols [27, 32] and helping the

development of network card drivers [33].

In order to regulate data transit between nodes, some agreements, analo-

gous to FLOSS licenses, such as the Pico Peering [34] and Freenetworks.org [35],

have been devised by community network members.

Even if these kind of networks have, were deployed, advantages for citi-

zens and local enterprises, the regulatory environment does not always help

their development [18].

Also metropolitan networks constituted by hot-spots for Internet con-

nection sharing are sometimes identi�ed as community networks [36, 37],

but are beyond the scope of this work.

2.2 Other scenarios

In addition to community networks, in this section some other application

scenarios for the Web of Trust OLSR Extension presented in chapter 5 are

depicted.

2.2.1 Airport MANET

In the following scenario, set in an airport, a networking infrastructure is

built between airplanes on the ground and the airport's network. Each

airplane, from same or di�erent 
ight companies, incorporates a wireless

OLSR node. In this way, each landed airplane may act both as user of

the network, by sending and receiving data, and as service provider, by

forwarding other airplane's tra�c. Other nodes are installed in the airport's

facilities and others may be installed on board of the ground vehicles used

for baggage or passenger transport.

Such network could be the target of several types of attacks (x sec-

tion 1.2), and thus the networking infrastructure should be secured. Using

2Some experimental extensions to the OLSR protocol, such as Link Quality [31] and

Fish-Eye routing have been designed and implemented in olsrd [9] by community network

members.
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a shared secret solution would require strong coordination and trust between

node administrators, which is not always the case.

In this scenario, if the nodes use the OLSR protocol, the extension de-

scribed in section 5.1 could be employed in order to obtain a secured in-

frastructure, without the need for strong central coordination and full trust

between network administrators.

This interconnection may then be exploited in order to give low-cost,

best-e�ort Internet access to passengers waiting in the airplane during an

intermediate stop, or to exchange non-critical data3 with the 
ight compa-

nies' o�ces before a new take-o�.

Figure 2.1: A multi-administered OLSR MANET in an airport.

3Due to the mobility of the nodes and the unreliability of the wireless medium, is very

di�cult to guarantee a minimal quality of service.
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2.2.2 Harbour MANET

A scenario similar to the one depicted in the previous section could be trans-

posed in an harbour, where boats could create a low-cost OLSR MANET

among themselves. This network could then be used to connect to local

services provided by the harbour's authorities or to provide Internet access

on board of the boats.
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Chapter 3

Pretty Good Privacy (PGP)

and the Web of Trust

This chapter is focused on the Pretty Good Privacy (PGP) cryptosystem

and its Web of Trust model, used for the validation of the ownership of

cryptographic keys.

3.1 Pretty Good Privacy

Pretty Good Privacy (PGP) is the name of the cryptosystem and open source

computer program originally developed by Phil Zimmermann in 1991, with

the aim of protecting users' privacy when using electronic communication

technologies (especially e-mail). The success of PGP brought to the de�-

nition of OpenPGP, an Internet Engineering Task Force (IETF) Proposed

Standard, speci�ed in [38].

PGP combines symmetric and asymmetric cryptography in order to ob-

tain high levels of security at reasonable speeds. Supported operations in-

clude encryption of text or binary data, decryption, as well as digital signa-

ture creation and veri�cation.
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3.1.1 Encryption and Decryption

When encrypting a plaintext, at �rst compression is applied, in order to

reduce data size and increase cryptographic strength by removing repeated

patterns, which may be exploited by some cryptanalysis techniques. Then a

random session key is generated, using entropy gathered from user-generated

events, such as mouse movements. This one-time session key is at �rst used

to encrypt the compressed plaintext using a symmetric and fast compression

algorithm, and then is in its turn encrypted using the recipient's public key.

Finally the obtained cyphertext and encrypted session key are transmitted,

eventually over an unsecured medium, to the recipient.

In order to decrypt, the session key used by the sender is extracted using

the recipient's private key. Then the original plaintext can be obtained by

applying subsequently the same symmetric algorithm used by the sender

and decompression.

A diagram that describes PGP message encryption and decryption can

be found in �gure 3.1.

3.1.2 Signature Creation and Veri�cation

Signature is obtained by applying a one-way cryptographic hash to the plain-

text to be signed, thus obtaining a �xed-length message digest that is en-

crypted using the sender's private key. The result of these operations is the

signature, that is sent with the message.

The recipient can verify a received signature by decrypting it using the

sender's public key, obtaining the message digest, and then comparing it

with an hash computed by herself.

Signature creation and veri�cation operations are schematized by �g-

ure 3.2.
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(a) message encryption by the sender

(b) message decryption by the receiver

Figure 3.1: PGP message encryption and decryption.

(a) signature creation by the sender

(b) signature veri�cation by the receiver

Figure 3.2: PGP signature creation and veri�cation.
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3.2 Web of Trust

PGP uses a distributed, non-hierarchical trust model called Web of Trust

to validate public keys' ownership.

Traditional, hierarchical Public Key Infrastructures (PKIs) rely on

a root Certi�cation Authority (CA), trusted by all users, who, using signed

electronic documents called Digital Certi�cates, assures the validity of public

keys. A CA may act as an introducer, i.e. validate public keys directly, or

as a meta-introducer, i.e. empower lower level Certi�cation Authorities to

validate keys in its place.

CAs are also responsible for issuing Certi�cate Revocation Lists (CRLs),

which include certi�cates whose validity has been revoked.

The whole structure relies on all users' trust in the root CA and on the

secrecy of the root CA's private key.

By contrast, in the Web of Trust model [39], each user validates other

users' public keys by signing them, and thus becoming an introducer of

these. When key signature takes place, a check level and an owner trust

level are assigned to the signed public key.

The check level speci�es how carefully the signer has checked the identity

of the key owner, and its value can range from 0 to 3:

� 0 means that no particular claim is made from the signer on the care-

fulness of identity veri�cation;

� 1 means that the identity of the signed key owner was not veri�ed, but

the signer believes that the identity is correct;

� 2 means that identity veri�cation was done;

� 3 means that very careful identity veri�cation was done.

The owner trust level speci�es the trust the signing user puts on the

signed key owner's to correctly certify, by signing, other keys, and usually

is not published. Four owner trust values are allowed:
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� Ultimate or Implicit trust;

� Complete trust;

� Marginal trust;

� Untrusted or No trust.

The validity level is a subjective indicator of how much an user considers

a public signed key to be valid. It is computed from the a�xed signatures,

the check level and the (local) owner trust, and may assume three di�erent

values:

� Invalid;

� Marginally valid;

� Valid.

Using the default model, a key is valid if, in terms of owner trust, a com-

pletely trusted signature or three marginally trusted signatures are a�xed

to it.

Thus users trust other users to certify key validity, without the need for

a central Certi�cation Authority, creating a web of trust among themselves:

a decentralized and fault-tolerant reputation system.

3.3 GNU Privacy Guard (GnuPG)

GNU Privacy Guard (GnuPG) [40] is the GNU project's [41] full imple-

mentation of the OpenPGP [38] speci�cation. Born in 1997 and developed

mainly in Europe due to United States' export regulations on cryptography1,

1The same US export regulations for which Phil Zimmermann was sued in 1993: cryp-

tosystems using keys longer than 40 bits were considered weapons. The author notes that

the decentralized and grass-roots nature of the Web of Trust model, paired with the his-

tory and political considerations that brought PGP into existence [42], well couples with

the principles and ideas that inspire several community networks.
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it supports encryption, decryption, signature creation and veri�cation, and

complete key management. Other features include:

� better functionality than PGP and some security enhancements over

PGP 2;

� decryption and veri�cation of PGP 5, 6 and 7 messages;

� supports ElGamal, DSA, RSA, AES, 3DES, Blow�sh, Two�sh, CAST5,

MD5, SHA-1, RIPE-MD-160 and TIGER algorithms;

� easy implementation of new algorithms using extension modules;

� the User ID is forced to be in a standard format;

� supports key and signature expiration dates;

� multi-language support;

� online help system;

� supported platforms: GNU/Linux (x86, Alpha, MIPS, SPARC64, M68k

or PowerPC architectures), FreeBSD, OpenBSD, NetBSD, Windows

95/98/NT/2000/ME/XP, MacOS X, . . . ;

� integrated support for HKP keyservers [43].

3.3.1 GnuPG Made Easy (GPGME) Library

GnuPG Made Easy (GPGME) is a C language library that provides an

Application Programming Interface (API) for GnuPG message encryption,

digital signature and key management operations. It is released under the

GNU Public License and is freely available at [40].

GNU Privacy Guard and GnuPG Made Easy have been employed in the

implementation of the Web of Trust OLSR plugin described in 5.1.
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Policy Based Routing

This chapter introduces policy based routing (or simply policy routing): the

ability, belonging to some operating systems, to take routing decisions on

incoming IP tra�c based on information other than the IP \Destination

address" �eld. This, coupled with complex rules and multiple routing tables,

allows for the creation of overlay networks over actual network topologies,

such as the ones built by the Web of Trust OLSR Extension, described in

chapter 5 and object of this thesis.

Mostly the policy based routing features of GNU/Linux [44] will be taken

into account, as it is the most widespread operating system supporting this

feature, and for the reason that many of the tools used to implement the

OLSRWeb of Trust extension are mainly designed for GNU/Linux operating

systems.

4.1 Introduction to Policy Based Routing

Conventional IP routing can be described as \a destination-driven pro-

cess" [45], with best-e�ort packet delivery. In other words, at each for-

warding router, the routing decision is entirely based on the IP \Destination

address" �eld, and no guarantee is given on data delivery, nor on bandwidth.

With the growth of the Internet, the need has emerged for more sophis-

ticated tra�c engineering tools, able to address and shape data streams, in
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order to achieve guaranteed quality of service.

By using policy based routing, a forwarding router can decide a packet's

next hop by examining the entire IP packet, especially all the �elds in the

IP header.

In this way routing can be based, for example, on the \Source address",

\Type of Service" or \Protocol" �elds, providing di�erent paths on the net-

work for di�erent users or classes of tra�c.

Usually, policy routing is enforced by a set of rules and/or multiple

routing tables.

4.2 Policy Based Routing in Linux

Policy routing in the Linux kernel is implemented by the Routing Policy

Database (RPDB), which contains three di�erent types of elements: ad-

dresses, routes and rules. By combining these elements between them and

using multiple routing tables, several policies may be enforced.

A collection of utilities called Iproute2 [46] provides easy access to the

RPDB. Using the ip tool, entries may be added to di�erent routing tables,

which are numbered from 1 to 255. Some of these tables have a special

meaning:

� table 255 is table local. Maintained automatically by the kernel,

contains routes for local and broadcast addresses;

� table 254 is tablemain. This corresponds to the \traditional" routing

table;

� table 253 is table default. Reserved for post-processing, if no matches

are found for the current packet in table 255 or table 254.

Moreover, rules may be de�ned, with associated priority values, in order

to a�ect the routing decision process. Up to 232 di�erent rules may be

speci�ed, each with a selector and an action predicate.
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When a packet is processed, the rules are scanned in order of increasing

priority. If the packet matches a selector, then the corresponding action is

performed.

The selector may match IP packet �elds such as source address, desti-

nation address, TOS, or other information such as the incoming interface.

Moreover, in combination, the Iptables/Net�lter [47] tool may be employed

in order to mark packets using very powerful selection criteria. The marked

packets may then be matched by a rule's selector using the \fwmark" spec-

i�er. This packet marking is performed in the \mangle-prerouting" table

(x �gure 4.1). Most of the policies that may be expressed in such fash-

ion are summarized in table 4.1. For further information, the Iproute and

Iptables documentation may be referenced.

Actions associated to rules may be of one of the following types:

� unicast. Return the route found in the routing table referenced by

the rule;

� blackhole. Silently drop the packet;

� unreachable. Generate a \Network is unreachable error";

� prohibit. Generate a \Communication is administratively prohib-

ited" error;

� nat. Translate the source address of the IP packet into some other

value.

Some rules are pre-de�ned in the RPDB:

� with priority 0, match all packets, lookup routing table local (255).

This rule cannot be overridden;

� with priority 32766, match all packets, lookup routing table main

(254);

� with priority 32767, match all packets, lookup routing table default

(253);
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Figure 4.1: A map of Iptables chains functional to policy routing
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Selector Commands

destination address/network ip rule

source address/network ip rule

tos ip rule

interface ip rule dev

packet length iptables + ip rule fwmark

ip header iptables u32 + ip rule fwmark

destination port iptables + ip rule fwmark

source port iptables + ip rule fwmark

udp header iptables u32 + ip rule fwmark

tcp header iptables + ip rule fwmark

address type (unicast,broadcast,...) iptables + ip rule fwmark

packet payload iptables string + ip rule fwmark

mac address iptables + ip rule fwmark

ipsec spi iptables + ip rule fwmark

ipsec packet handling policy iptables + ip rule fwmark

transmitted packets or bytes iptables + ip rule fwmark

average packets or bytes iptables + ip rule fwmark

number of parallel connections from

same client

iptables + ip rule fwmark

dscp - tos iptables + ip rule fwmark

owner process iptables + ip rule fwmark

realm iptables + ip rule fwmark

random iptables statistic + ip rule fwmark

packet arrival time iptables time + ip rule fwmark

raw bytes iptables u32 + ip rule fwmark

Table 4.1: Summary of the selectors that may be speci�ed by using the

Iptables and Iproute tools.
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Chapter 5

The OLSR Web of Trust

Extension

The Web of Trust OLSR extension, object of this thesis, aims at bearing

the PGP Web of Trust reputation system, described in section 3.2, into

multi-administered OLSR networks, introduced in chapter 2. The extension

is modelled on the Secure Extension to the OLSR Protocol [2] summarized

in section 1.3, but due to the di�erent objectives and nature of the two

extensions, and to variable-size signatures, some fundamental modi�cations

are introduced.

5.1 OLSR Web Of Trust Extension

The distributed design of MANETs make them suitable to scenarios in which

the administration (or even ownership) of the network is decentralized1.

Some OLSR extensions, including the above-mentioned, Secure Extension

to the OLSR Protocol [2], based on a shared key, assume the management

of the network to be centralized or, at least, strongly coordinated.

The Web of Trust OLSR Extension has the objective of building a

trusted networking infrastructure minimizing at the same time the need

1See chapter 2 on multi-administered networks.
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for central entities, and to permit the creation of multi-level trusted paths

by populating di�erent routing tables2 associated to di�erent levels of trust.

A shared key mechanism is not suitable for this task, so asymmetric key

cryptography has to come into play. A widely tested and accepted standard

in this area is represented by OpenPGP3 [38].

Moreover, the users of OpenPGP implementations, such as GNU Privacy

Guard (GnuPG), create a Web of Trust among themselves by signing and

distributing each other's public keys. Each user computes a subjective trust

value for every other user, based on trust rankings given by others or by

herself. These trust values are used by each node using the Web of Trust

extension to create entries in di�erent routing tables, each associated to a

trust level.

The extension is focused on the infrastructure, and does not provide

con�dentiality or integrity for user data. Only the packets of the routing

protocol are signed, hence authenticated, and veri�ed for integrity.

The signature message and the timestamp exchange messages described

in the existing OLSR secure extension [2] (x section 1.3), designed for sym-

metric cryptography and �xed size signatures, are not suitable for variable

size signatures, or signatures whose size is not �xed at a constant value,

such as OpenPGP signatures [38]. However, departing from these messages,

a new secure extension, called \Web of Trust" extension, is here devised.

First of all, it should be considered that OLSR messages must be aligned

on 32 bits, so if variable size signatures are used, a variable number of

padding bits have to be appended at the end of the messages, until 32-

bit alignment is reached. For this reason \signature" �elds are replaced

by \variable size signature + padding" �elds and a \signature size" �eld is

added to the three timestamp exchange messages, in order to distinguish the

actual signature from the padding bits. Furthermore, digest computations

involving the symmetric shared secret between nodes are replaced by PGP

signatures derived from private keys on board of the network nodes, and,

2See chapter 4 on policy based routing.
3See section 3.1 on Pretty Good Privacy (PGP).
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because the signature length is not known in advance, a �eld �lling process

is introduced prior to the actual signature computation.

The structure of the new OLSR messages is described in �gure 5.1, �g-

ure 5.2, �gure 5.3 and �gure 5.4.

The timestamp exchange mechanism, as stated before, similar to the

one used in [2], but adapted to asymmetric key cryptography, assumes that

nodes' local clocks are relatively synchronized, i.e. run with the same fre-

quency, and can be summarized as follows (refer also to �gure 5.6):

1. challenge: A! B : ChaS(M);

2. challenge-response: B ! A : ChbTsbD(IPb; Cha)S(M);

3. response-response: A! B : TsaD(IPa; Chb)S(M);

where:

� Chx is a 32-bit nonce generated by node X;

� S(s) the PGP signature of data s computed using a local private key;

� D(d1; d2; : : :) the digest of the concatenation of d1; d2; : : :;

� Tsx the timestamp of node X;

� IPx the main address of node X;

� M the message, with the \Message Size" and the \Signature Size"

�elds �lled using the �rst two bytes of the \Timestamp" �eld, except

in challenge messages, where the �rst two bytes of the \Challenge"

�eld are used instead.

Figure 5.5 shows a 
ow chart describing the algorithm followed on the

arrival of a signed packet. Signature veri�cation is an CPU intensive oper-

ation, so the need for it is minimized by checking in advance:

� if a timestamp is registered for the originator. If there is not

a registered timestamp associated to the originator, then drop the
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0 31

Message Type Vtime Message Size

Originator Address

Time To Live Hop Count Message Sequence Number

Scheme Algorithms Reserved

Timestamp

Signature (variable size)

Figure 5.1: Web of Trust OLSR extension basic signature message

0 31

Message Type Vtime Message Size

Originator Address

Time To Live Hop Count Message Sequence Number

Destination

Random value "challenge"

Signature size

Signature (variable size) + Padding

Figure 5.2: Web of Trust OLSR extension timestamp exchange challenge

message
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0 31

Message Type Vtime Message Size

Originator Address

Time To Live Hop Count Message Sequence Number

Destination

Random value "challenge"

Timestamp

Response Hash (160 bits)

Signature Size

Signature (variable size) + Padding

Figure 5.3: Web of Trust OLSR extension timestamp exchange challenge-

response message

0 31

Message Type Vtime Message Size

Originator Address

Time To Live Hop Count Message Sequence Number

Destination

Timestamp

Response Hash (160 bits)

Signature Size

Signature (variable size) + Padding

Figure 5.4: Web of Trust OLSR extension timestamp exchange response-

response message
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Figure 5.5: A 
ow chart describing the algorithm used upon the arrival of

a new signed packet.
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Figure 5.6: A 
ow chart of the timestamp exchange algorithm.
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received packet and begin a timestamp exchange by sending a challenge

message;

� the maximum level of trust associated to the message origina-

tor. Several PGP signatures may be associated to the same message

originator, each with a trust level. If the highest level of trust as-

sociated to these signatures corresponds to \invalid" or \unknown",

then the signature can be considered \invalid" without the need for

cryptographic veri�cation;

� that the author of the signature corresponds to the message

originator.

In the basic signature message (�gure 5.1), a 32-bit Timestamp �eld is

used to prevent replay attacks. Message sequence numbers are not enough

for this task: with 16 bits wraparound occurs too frequently4. A Variable

Size Signature �eld follows. The signature is obtained by copying the

contents of the �rst two bytes of the \Timestamp" �eld into the \Message

Size" and OLSR \Packet Length" �elds, and then computing, with a local

private key, the PGP signature of:

� the OLSR packet header, with the modi�ed \Packet Length" �eld,

� all OLSR messages in the packet except the signature message,

� the header of the signature message, with the modi�ed \Message Size"

�eld,

� the sub header of the signature message,

� the timestamp.

The basic signature message must be the last message in the OLSR packet,

so no considerations on 32-bit alignment of the payload are needed.

The three timestamp-exchange messages are self-signed, as basic signa-

ture messages cannot be employed without consequences on security if the

4See section 1.3.
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timestamp exchange has not been performed. In fact basic signature mes-

sages rely on the \Timestamp" �eld to avoid replay attacks, thus, if the

timestamp exchange is not performed previously, a receiver cannot be sure

of the validity of the timestamp and may be vulnerable to replay attacks.

Moreover, when an OLSR packet from a neighbor whose timestamp has

not yet been registered is received, the timestamp exchange messages are

extracted from the packet and processed, while the other messages, including

the signature message, are dropped.

Because variable-size signatures, whose size is not known in advance, are

used, some considerations are needed:

� before signing or verifying challenge-response (�gure 5.3) or response-

response (�gure 5.4) messages, their \Message Size" and \Signature

Size" �elds are �lled with the �rst two bytes of the \Timestamp" �eld.

No \Timestamp" �eld is present in challenge messages (�gure 5.2),

so the �rst two bytes of the \Challenge" �eld are used for the same

purpose 5;

� after signing, the \Signature Size" �eld is updated with the size of the

signature, the end of the message is �lled with padding as needed in

order to align it on 32-bits, and the \Message Size" �eld is updated

with the number of bytes measured from the beginning of the \Message

Type" �eld till the end of the padding (or the signature, if padding is

not present).

When the timestamp-exchange process is completed, basic signature

messages may be employed. Upon the reception of a packet with a ba-

sic signature message, the validity of the signature is checked as well as the

fact that the message originator's address corresponds to the author of the

signature. If the signature is not valid or the message originator is not the

5\Timestamp" and \Challenge" �elds are chosen as �lling instead of constant values,

for the purpose of adding entropy to the signature.
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author of the signature, the packet is dropped. Otherwise the validity value6

associated to the signature is stored in a \trust state" variable.

After OLSR packet processing, instead of a single standard routing ta-

ble, taking advantage of policy routing features, multiple routing tables are

updated. The selection of which routing table to use for each entry is based

on the value of the \trust state" variable.

5.2 Security Considerations

In this section, the security considerations exposed in section 1.2 are com-

pleted with further observations, at the light of the afore-made description

of the Web of Trust OLSR extension.

The attacks that the extension aims to counter (x �gure 1.6) are gener-

ation of incorrect control messages and replay attacks.

Generation of incorrect control messages, i.e. identity and link spoo�ng,

is opposed by the use of a signature message in all OLSR control tra�c

packets. The assumption made is that the nodes in the network are not

compromised and that trusted nodes are not malicious.

Replay attacks are prevented by the use of a timestamp in the signature

message, and, to avoid the necessity for time synchronization between nodes,

a timestamp-exchange mechanism is introduced.

In timestamp-exchange messages, the values of the \Signature Size" and

\Message Size" �elds are not included when computing the signature, thus

they are not veri�ed for integrity and could be tainted through a man in

the middle attack. We here suppose that the physical integrity of the nodes

and the secrecy of stored private keys have not been compromised.

The simple modi�cation of the above-cited �elds by an attacker should

have the only e�ect of a�ecting the set of bytes in the packet considered as a

signature by the receiver. This set of bytes would be a valid signature with

respect to the originator with probability very close to zero, thus certainly

6The PGP validity value, as described in section 3.2, may assume three di�erent values:

\Invalid", \Marginally valid" and \Valid".
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the packet would be dropped by the receiver after unsuccessful signature

veri�cation.

If in addition to the \Signature Size" and \Message Size" �elds, the sig-

nature or the �nal padding are modi�ed, asymmetric cryptography's prop-

erties render the task of creating a valid new signature, without knowing

the private key of the originator, practically impossible. So also in this case,

the packet would be dropped by the receiver.

Having the receiver drop packets that were correctly formed by the orig-

inator would result in a Denial of Service (DoS). But this may be also

obtained by tainting every other byte in the message, hence the proposed

solution for managing variable-size signatures does not add extra vulnera-

bilities with respect to the described scenario.
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Chapter 6

Implementing and Testing

the OLSR Web of Trust

Extension

This chapter reports the implementation and subsequent testing work, done

for this thesis, of the OLSR Web of Trust Extension described in chapter 5.

6.1 Implementation

The Web of Trust OLSR extension has been developed as a plugin of olsrd,

the UniK OLSR Implementation1, and intervenes in various spots of the

OLSR packet processing algorithm. The plugin, named \Web of Trust Plu-

gin", registers its functions using the interface provided by olsrd (x �gure 6.1

and �gure 5.5).

The olsrd daemon passes the control to the Web of Trust Plugin functions

upon the following events:

� when a packet is received, to check if a timestamp is registered

with the packet's originator. If a timestamp is not registered, then the

1See section 1.4.
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timestamp-exchange process is initiated. Otherwise, if a tmestamp is

already registered:

{ the maximum level of trust associated with the originator is re-

trieved from the local GPG database. If the maximum trust level

corresponds to "invalid", i.e. the stored public key associated to

the originator is outdated or untrusted, then the entire packet is

discarded;

{ the packet's signature, contained in the signature message, is

checked for correctness. If the signature is incorrect, then the

packet is discarded;

{ from the originator's IP address, the corresponding e-mail address

is retrieved2. This is checked against the author of the signature.

If it does not match, then the packet is discarded;

{ if the packet passed all the tests, then the trust (validity) value

associated to the originator is stored in a \trust state" variable.

Then control passes again to olsrd.

� when an entry is added to the routing table, the plugin popu-

lates three di�erent routing tables, basing itself on the \trust state"

value determined in the previous steps. Control passes back to olsrd;

� before an OLSR packet is sent, a signature message is a�xed,

using the algorithm afore-described in section 5.1, and control passes

again to olsrd.

The Web of Trust Plugin is written in C with some external dependen-

cies:

� The GnuPG Made Easy (GPGME) library (brie
y introduced in sec-

tion 3.3.1), which in turn depends on:

2The association between IP addresses and e-mail addresses should be supplied by the

user through the olsrd con�guration �le.
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Figure 6.1: The OLSR Web of Trust plugin design.
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{ GNU Privacy Guard (GnuPG) (see chapter 3);

{ the libgpg-error library, that can be freely downloaded from the

GnuPG website [40].

As Linux routing policy database (RPDB) calls are employed by the

implementation, the plugin is compatible only with GNU/Linux systems.

6.2 Con�guration

In order to enable the Web of Trust plugin, a new section has to be added

to the olsrd con�guration �le, and some parameters should be speci�ed. A

sample con�guration section is here reported, along with an explanation of

the plugin con�guration parameters.

1 LoadPlugin "olsrd_wot.so.0.1"

{

PlParam "Keyname" "node@ninux.org"

PlParam "Gpghomedir" "/root/. gnupg"

PlParam "Gpgfilename" "/usr/bin/gpg"

6 PlParam "Passphrase" "node"

#PlParam Passphrasehelper" "/root/passhelper.sh"

PlParam "Ipowner" "172.20.0.9 source@ninux.org"

PlParam "Ipowner" "172.20.0.17 source@ninux.org"

11 PlParam "Ipowner" "172.20.0.18 node2@ninux.org"

PlParam "Ipowner" "172.20.0.25 node2@ninux.org"

PlParam "Ipowner" "172.20.0.1 node2@ninux.org"

}

The con�guration parameters that may be speci�ed are:

� Keyname: the e-mail, name or key id associated to the PGP private

key used to sign the packets;

� Gpghomedir: the GnuPG home directory;

� Gpg�lename: the full path of the GnuPG binary;

48



CHAPTER 6. IMPLEMENTING AND TESTING THE OLSR WEB OF TRUST EXTENSION

� Passphrase: the pass phrase needed to use the private key;

� Passphrasehelper: if the user is not willing to provide a cleartext

pass phrase, she may provide the full path of a program that outputs

the pass phrase;

� Ipowner: specify an IP to e-mail association in order to retrieve the

appropriate public key associated to the sender of a packet. At the

moment only one e-mail can be associated to an IP address.

Furthermore, in order to permit a correct operation of the extended

protocol, some OLSR parameters had to be empirically adapted. The new

recommended values, to be speci�ed in the olsrd con�guration �le, are sum-

marized in table 6.1.

Parameter name RFC 3236 value new value

HelloInterval 2.0 6.0

HelloValidityTime 6.0 60.0

TcInterval 5.0 15.0

TcValidityTime 15.0 75.0

MidInterval from 5.0 15.0

MidValidityTime 15.0 75.0

HnaInterval 5.0 15.0

HnaValidityTime 15.0 75.0

Table 6.1: New recommended values for some OLSR parameters.

In order to take advantage of the policy routing features of Linux, some

rules have to be added to the RPDB (x chapter 4), by using the iproute [46]

tool. The routing tables currently used (but may change, or better be con-

�gurable by the user in the future) by the Web of Trust plugin are table

210 for fully trusted entries and table 220 for marginally and fully trusted

entries, and table 254 (table main) that contains all routes.

Using the following rules, the most trusted route available will be selected

for incoming tra�c:
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ip rule add from all priority 30010 table 210

ip rule add from all priority 30020 table 220

Or a minimum granted service semantic may be de�ned on the \Type

of Service" �eld of IP packets:

ip rule add tos 0x0f priority 30010 table 210

ip rule add tos 0x0f priority 30015 blackhole #if no match is

found in table 210, silently drop the packet

ip rule add tos 0x1f priority 30020 table 220

ip rule add tos 0x1f priority 30025 blackhole #if no match is

found in table 220, silently drop the packet

6.3 Testing

During development, tests were performed using the Netkit [48, 49] network

emulator. This section will show how to set up a testing environment for

the Web of Trust olsrd plugin and the obtained results.

Netkit and GnuPG3 are assumed to be correctly installed on the system,

which is supposed to be GNU/Linux.

Two virtual machines directly connected, node1 and node2, are set up,

through the following steps:

1. Install GNU Privacy Guard and the GnuPG Made Easy library in

the virtual machines' directories. The compressed source code of the

two packages is supposed to be already downloaded, their checksums

checked, and stored in the user's home (~) directory:

$ mkdir -p wotlab/shared/usr/local

$ cd wotlab/

$ WOT_PREFIXDIR="`pwd `"

$ tar -jxf ~/gnupg -1.4.9. tar.bz2

3 For more information on Netkit and GNU Privacy Guard (GPG) please refer to [49],

section 3.3 and [40].
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$ cd gnupg -1.4.9/

$ ./ configure --prefix=$WOT_PREFIXDIR/shared/usr/local

$ make

$ make install

$ cd ..

$ rm -rf gnupg -1.4.9/

$ tar -jxf ~/gpgme -1.1.4. tar.bz2

$ cd gpgme -1.1.4/

$ ./ configure --prefix=$WOT_PREFIXDIR/shared/usr/local

$ make

$ make install

$ cd ..

$ rm -rf gpgme -1.1.4/

2. Install Olsrd, patched with the wot plugin patch, available from [50]

too4:

$ wget http :// stud.netgroup.uniroma2.it/~ claudio.pisa

/wotplugin/addwot -olsrd -0.5.6 -r2.patch

$ tar -jxf ~/olsrd -0.5.6 -r2.tar.bz2

$ cd olsrd -0.5.6 -r2/

$ patch -p1 < ../ addwot -olsrd -0.5.6 -r2.patch

$ make OS=linux build_all

$ make DESTDIR=$WOT_PREFIXDIR/shared install_all

$ cd ..

$ rm -rf olsrd -0.5.6 -r2

$ rm addwot -olsrd -0.5.6 -r2.patch

3. Generate the PGP keys and create a minimal web of trust:

$ mkdir -p node1/root/.gnupg

$ mkdir -p node2/root/.gnupg

$ gpg --homedir node1/root/.gnupg --gen -key

4The author hopes that the Web of Trust Plugin source code will be merged in some

future release of olsrd, making the patching step useless.
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# Choose DSA and Elgamal , 1024 bits key size , no

expiration , real name "Foo Foo", e-mail address

node1@ninux.org , pass phrase "foo"

$ gpg --homedir node2/root/.gnupg --gen -key

# Choose DSA and Elgamal , 1024 bits key size , no

expiration , real name "Bar Bar", e-mail address

node2@ninux.org , pass phrase "bar"

$ gpg --homedir node1/root/.gnupg --export --output

node1export

$ gpg --homedir node2/root/.gnupg --export --output

node2export

$ gpg --homedir node1/root/.gnupg --import node2export

$ gpg --homedir node2/root/.gnupg --import node1export

$ rm node?export

# Perform normal signatures , fully trusting the other user

$ gpg --homedir node1/root/.gnupg --sign -key "Bar Bar"

$ gpg --homedir node2/root/.gnupg --sign -key "Foo Foo"

# To assign a trust value to a key owner , use the

following syntax instead:

# $ gpg --homedir node1/root/.gnupg --edit -key "Bar Bar"

# and choose tsign

4. Create a new �le called lab.conf and add the following:

LAB_AUTHOR="Claudio Pisa"

LAB_EMAIL="clauz A T ninux.org"

LAB_DESCRIPTION="Web of Trust OLSR extension test"

node1 [0]=A

node2 [0]=A

5. The same for node1.startup:

/sbin/ip addr add 10.0.0.1/16 dev eth0 broadcast

10.0.255.255
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/sbin/ip link set eth0 up

/sbin/ldconfig

6. and node2.startup:

/sbin/ip addr add 10.0.0.2/16 dev eth0 broadcast

10.0.255.255

/sbin/ip link set eth0 up

/sbin/ldconfig

7. Create etc directories and copy the olsrd.conf �le:

$ mkdir -p node1/etc

$ mkdir -p node2/etc

$ cp shared/etc/olsrd.conf node1/etc

$ cp shared/etc/olsrd.conf node2/etc

8. Edit node1/etc/olsrd.conf, adding the following lines:

1 LoadPlugin "olsrd_wot.so.0.1" {

PlParam "Keyname" "Foo"

PlParam "passphrase" "foo"

PlParam "gpghomedir" "/root/. gnupg"

PlParam "gpgfilename" "/usr/bin/gpg"

6 PlParam "Ipowner" "10.0.0.2 node2@ninux.org"

}

Specify the interface "eth0" instead of "XXX" "YYY", and change the

olsr parameters as speci�ed in table 6.1.

9. And also edit node2/etc/olsrd.conf:

LoadPlugin "olsrd_wot.so.0.1" {

PlParam "Keyname" "Bar"

3 PlParam "passphrase" "bar"

PlParam "gpghomedir" "/root/. gnupg"

PlParam "gpgfilename" "/usr/bin/gpg"

PlParam "Ipowner" "10.0.0.1 node1@ninux.org"

}
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Specifying here too the eth0 interface and changing the OLSR param-

eters.

10. Then launch the Netkit lab:

$ lstart

11. Run the olsrd daemon on both virtual machines

$ olsrd

In table 6.2 some measures from an emulation performed using Netkit

running on a computer with an AMD64 2GHz CPU are provided. The

\Symmetric" column refers to the Secure Extension to the OLSR Protocol

described in [2], which uses 128 bit long keys, which is a good trade-o�

between performance and security using symmetric cryptography. In order

to provide a similar level of security with asymmetric cryptography, to the

author's advice at least 1024 bits long keys should be employed.

Symmetric RSA DSA measure unit

Length of the key 128 1024 1024 bits

Basic signature veri�cation 0.132 159.422 150.784 milliseconds

Basic signature adding 0.05 55.477 60.130 milliseconds

Challenge veri�cation 0.689 93.274 98.664 milliseconds

Challenge-response veri�cation 0.759 170.079 196.656 milliseconds

Challenge-response creation 0.522 45.188 49.327 milliseconds

response-response veri�cation 0.141 175.373 194.526 milliseconds

response-response creation 0.532 78.992 82.78 milliseconds

Table 6.2: Measured times for some cryptographic operations
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Chapter 7

Conclusions, Current and

Future Work

7.1 Conclusions

In this thesis, the Web of Trust OLSR Extension, a security extension

to the OLSR protocol for multi-administered networks, was introduced.

Multi-administered networks, especially wireless community networks,

are spreading and have already become critical infrastructures in several ar-

eas of the world. Many of them employ the Optimized Link State Routing

(OLSR) protocol for Mobile Ad Hoc Networks (MANETs) to manage their

routing infrastructure. As these networks develop, they may become target

of various threats, and thus the need for security at the infrastructure level

emerges. Some of the existing OLSR security extensions rely on symmetric

cryptography and a shared secret between the nodes of the network, but this

is not acceptable in community networks, where an administrative domain

may be as small as one node, and there is very loose coordination between

network administrators. In this scenario, asymmetric cryptography and rep-

utation systems have to come into play. A widely accepted standard in both

of these areas is represented by PGP and its web of trust model.

By using hop-by-hop OpenPGP signatures in OLSR control packets,
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and an appropriate timestamp exchange mechanism, some threats, such as

identity spoo�ng, link spoo�ng and replay attacks, may be countered by the

Web of trust extension. No protection is provided for user tra�c, which

may be secured by other means (for example by using TLS/SSL).

Moreover, by employing policy based routing, and updating multiple

routing tables on packet signature validity basis, paths corresponding to

di�erent levels of trust may be traced over the routing infrastructure.

The Web of Trust extension has been implemented as a plugin of the

UniK OLSR Implementation (olsrd), popular among community network

members, and subsequently tested in an emulated environment.

7.2 Current Work

Departing from the work done for this thesis, an article entitled \Trusted

Routing in Wireless Community Mesh Networks" has been derived. This ar-

ticle is reported in appendix A, at the time of this writing is in the process of

being completed for the IEEE International Conference on Communications

2009 [51], and a similar article is planned to be submitted for publication to

the Security and Communication Networks Journal (Wiley) [52] in the next

months.

7.3 Future Work

The well-known slowness of asymmetric cryptography with respect to sym-

metric cryptography is rea�rmed by the performed tests. This slowness,

produced by CPU time consumption and which should be minimized espe-

cially for an employment of the plugin on board of embedded devices, could

be mitigated by the use of a symmetric key exchange mechanism between

neighbors, in addition to the timestamp exchange. This mechanism could

be designed as follows: when node A has performed a timestamp exchange

with node B, it generates a random session key. This session key is then en-

crypted with the public key of the administrator of node B, and sent to node
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B. Node B generates a random session key too, and sends it, encrypted with

the public key of the administrator of node A, to node A. The key exchange

is done after the timestamp exchange in order to prevent replay attacks on

the key exchange protocol. Each node then uses the session key received by

its neighbor X to sign, using symmetric cryptography (e.g. SHA-256 hashes,

but the speci�c algorithm could be { better { negotiated), OLSR packets

addressed to X, and the session key itself has choose to verify the signatures

a�xed to the OLSR packets received from its neighbor. It should be pointed

out that in the depicted mechanism, a node generates and stores a session

key for each trusted neighbor, each key associated to an incoming control

tra�c stream.

Moreover, to save more CPU time, perhaps the cryptographic digests

used in the timestamp exchange process could be, after an accurate study,

removed and replaced with the concatenation of their cleartext arguments.

PGP key distribution currently relies on the nodes' administrators, which

should share their keys among themselves, assign reputation levels through

key signing, and update their node's trust base. The use of PGP keyservers,

located in various spots of the network, containing, as usual for PGP key-

servers, the same, replicated information, could be coupled with an auto-

matic key retrieving and updating mechanism from the network nodes. The

major drawback is that in case of a network split1, synchronization between

the keyservers could be lost until the network is re-united. A system based

on DHT (Distributed Hash Tables) coupled with an appropriate protocol,

could be devised in order to obtain a highly decentralized key distribution

mechanism without the need for keyservers.

To take better advantage of the trusted paths located by the Web of

Trust extension, a well-determined semantic could be de�ned on the \Type

of Service" �eld of the IP packets belonging to user tra�c. Some values

could then be associated to a trust maximization service, while others to a

1Network splits may occur frequently in wireless community networks, due to the un-

reliability of the wireless medium.
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speed maximization service.

Furthermore, an user-friendly system could be designed, with the capa-

bility of translating Pico Peering Agreement (or similar agreements) clauses

into policy routing rules.

If address autocon�guration mechanisms are employed, no centralized IP

address allocation is needed, and thus users may not know the association

between IP addresses and network node's administrators. In this case, the

step in which the author of the signature is checked against the message

originator can be simply skipped.

Extensions similar to the Web of Trust Extension could be devised for

other protocols that operate in multi-administered networks; for example

B.A.T.M.A.N., AODV, or even BGP.

The plugin, that relies on the GnuPG Made Easy (GPGME) library for

signature and key manipulation, works with several versions of olsrd, but

the use of Linux RPDB (Routing Policy Data Base) speci�c calls restricts

the portability of the implementation to GNU/Linux systems. Other op-

erating systems, such as FreeBSD, support policy routing in their kernels,

and thus the plugin might be ported to these systems in a future work. On

those platforms where policy routing support is not available but GPGME

is operational, the policy routing features might be simply deactivated in

the plugin, in order to at least take advantage of the protection provided by

signatures a�xed to control packets.

Currently, in the implementation, routes output by the standard OLSR

packet processing algorithm are added to the routing table determined by

the validity value computed in the most recent signature check. Thus trust

is not used as a metric, nor a�ects the MPR selection process, but these

features could be implemented in the future.

IPv6 support is not implemented yet, but, as olsrd fully supports IPv6,

it could be easily added with minor changes to the codebase.

The plugin has only been ran in an emulated environment. Tests in a real

environment, especially in a community network, would be very interesting.
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Trusted Routing in Wireless

Community Mesh Networks

In this appendix, an article entitled \Trusted Routing in Wireless Commu-

nity Mesh Networks", derived from the work done for this thesis, is reported.

At the time of this writing is in the process of being completed for the IEEE

International Conference on Communications 2009 [51], and a similar article

is planned to be submitted for publication to the Security and Communica-

tion Networks Journal (Wiley) [52] in the next months.
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Università degli studi di Roma Tor Vergata
Rome, Italy

Email: proto@ing.uniroma2.it

Abstract—The routing control traffic in a wireless community
mesh network crosses administrative boundaries. The network
is partitioned in many administrative domains, sometimes as
little as one node, connected by autoconfigured radio links.
Because neighboring domains are typically unknown, have an
authentic and authorized routing information is an open problem.
In this paper we propose a novel approach to authenticate
routing control traffic in wireless community networks, taking
into account trust and reputation between network nodes in
different administrative domains.

INTRODUCTION

Routing protocols are target of many attacks [1]. Appropri-
ate security extensions are necessary, to make sure information
in the routers’ databases is authentic and authorized. A routing
domain managed by an IGP protocol usually corresponds to
a single administrative domain. For this reason IGP routing
protocols security extensions are based on a pre-shared secret
between the nodes. This creates an open problem because it is
not possible to deploy pre-shared keys in wireless community
networks where every node is owned by a different entity.

Reputation of a remote (possibly unknown) node to decide
to accept its advertised routing information is necessary.
Alternatives to a pre-shared secret is a PKI model based on
centralized third parties as the one proposed in [2], but this
is not desirable in multi-owned network infrastuctures without
a central administration. In wireless mesh networks it is not
trivial to deploy a centralized security mechanism because
network splits are frequent due to the unreliability of the
wireless medium.

We propose a novel approach, trusted routing, where un-
known nodes can exchange route information with a certain
level of confidence. We make use of a reputation framework:
the network administrators create a web of trust among them-
selves without the need for central entities.

We enhance network nodes with the capability of deciding
whether to trust or not routing information received from other
nodes. The routing information is not just accepted or rejected:
according to a metric, the information collected is classified
with a trust level and handled according to local policies.

In our work we extend the OLSR routing protocol, widely
used by European wireless community networks, with our Web
of Trust security extension.

In the remainder of the paper we show our proposed exten-
sion to the OLSR routing protocol, going through a security
analisys. At last we show the details of our implementation
and testing and we draw our conclusions.

I. PROBLEM STATEMENT

Wireless community networks are intrinsically decentralized
with only minimal coordination. The goal of these networks
is to make possible to not technical people (community
members) to deploy their own infrastructure.

Community members deploy antennas to exchange data
with other unknown members in radio proximity. Conse-
quently the organization of the network happens by distributed
autoconfiguration. Radio links are automatically exploited
when neighbours nodes are detected. Recent research [3], [4],
[5] at the network layer identified solutions to automatically
configure a network without the need of any prior coordina-
tion.

The lack of a central authority managing the network as a
whole makes impossible the adoption of security extensions
based on a pre-shared secret installed on all the nodes. If
routing protocols for wireless mesh networks are not extended
with the capability of assigning a reputation to unknown nodes,
routing control traffic cannot be authenticated and authorized,
and thus cannot be trusted.

To the best of our knowledge there is not any decentralized
security extension to routing protocols, capable of managing
the trust relationships between unknown network nodes.

In this work we present a security extension to the OLSR
routing protocol to manage reputation of unknown nodes
directly at the network level, without the involvement of
central authorities. Our work is based on the well consolided
standard PGP reputation framework.

II. PROTOCOL

We extended the OLSR routing protocol with a security
extension based on a Web of Trust.

A. Overview

We briefly highlight the characterics of the OLSR protocol
functional to our discussion, omitting a complete overview that
can be found in [6].



OLSR packets (figure 1) are composed of one or more
OLSR messages. It is possibile to define new OLSR messages
to add new features to the base protocol.
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Message Type Vtime Message Size
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MESSAGE
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Time To Live Hop Count Message Sequence Number

MESSAGE

...

Fig. 1. Basic OLSR Packet Format

To create the topology of the network, OLSR sends over
the media link broadcast packets that any other node in radio
proximity can receive. Two are the foundamental messages of
the OLSR protocol: HELLO, and TC. HELLO messages are
used for neighbor discovery and link sensing; these packets
expire after one hop and are never forwarded. TC messages are
used for network topology information diffusion; these packets
are forwarded away from the originator to deliver topology
information incapsulated into new OLSR packets at each hop.

A node running our Web of Trust OLSR extension is
associated to a public/private key pair of his administrator.
The node signs with this private key all the generated OLSR
packets. Packets not signed, or with an invalid signature,
are immediately discarded by the receivers. The information
received in OLSR packets with a correctly verified signature
is evaluated according to local trust policies. The Web of
Trust extension is responsible for three tasks: i) signature
and verification of OLSR packets, ii) synchronization of the
clocks between neighbor nodes to prevent replay attacks, iii)
and the enforcement of local trust policies on the collected
routing information. The process of sending and collect routing
information is here summarized:

� when a packet is received, the node checks if a
timestamp is registered with the packet’s originator. If a
timestamp is not registered, then the timestamp-exchange
process is initiated to find the time difference between the
local clock and the new neighbor’s clock. Otherwise:

– the maximum level of trust associated with the
originator is retrieved from the local PGP database.
If the maximum trust level corresponds to ”invalid”,
i.e. the stored public key associated to the originator
is unknown or outdated or untrusted, then the entire
packet is discarded;

– the packet’s signature, contained in the signature
message, is checked for correctness. If the signature
is incorrect, then the packet is discarded;

– if the packet passed all the tests, then the trust
(validity) value associated to the originator is stored
in a ”trust state” variable.

� before an OLSR packet is sent, a signature message
is affixed, containing a signature of the all packet. The
signature is obtained by copying the contents of the first
two bytes of the Timestamp field into the “Message Size”
and “OLSR Packet Length” fields, and then computing,
with a local private key, the PGP signature of:

– the OLSR packet header, with the modified “Packet
Length” field,

– all OLSR messages in the packet except the signature
message,

– the header of the signature message, with the modi-
fied “Message Size” field,

– the sub header of the signature message,
– the timestamp.

B. The Timestamp Exchange

To prevent replay attacks we introduce in the OLSR signa-
ture message a 32 bit timestamp. We do not use the existing
OLSR sequence number because a 16 bit counter does not
protect from replay attacks, as explained in detail in [7].

The signaling employed to register the nodes’ timestamps
assumes that nodes’ local clocks are relatively synchronized,
i.e. run with the same frequency, and can be summarized as
follows:

1) challenge: A! B : ChaS(M);
2) challenge-response: B ! A : ChbTsbD(IPb; Cha)S(M);
3) response-response: A! B : TsaD(IPa; Chb)S(M);

where:
� Chx is a 32-bit nonce generated by node X;
� S(s) the PGP signature of data s computed using a local

private key;
� D(d1; d2; : : :) the digest of the concatenation of
d1; d2; : : :;

� Tsx the timestamp of node X;
� IPx the main address of node X;
� M the message, with the “Message Size” and the “Sig-

nature Size” fields filled with the first two bytes of the
“Timestamp” field, except for challenge messages, in
which the first two bytes of the “Challenge” field are
used for the same purpose.

Note that when a node receives an OLSR packet with any
timestamp-exchange message, the rest of the messages in the
packet are discarded. In fact timestamp-messages are self-
signed while any other message in the received packet does not
have a valid signature. To cope with variable size signatures
we used the following rules:

� before signing or verifying challenge-response (figure 3)
or response-response (figure 4) messages, their “Message
Size” and “Signature Size” fields are filled with the first
two bytes of the “Timestamp” field. No “Timestamp”
field is present in challenge messages (figure 2), so the
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Fig. 2. Web of Trust OLSR extension timestamp exchange challenge message

0 31
Message Type Vtime Message Size

Originator Address
Time To Live Hop Count Message Sequence Number

Destination
Random value "challenge"

Timestamp
Response Hash (160 bits)

Signature Size
Signature (variable size) + Padding

Fig. 3. Web of Trust OLSR extension timestamp exchange challenge-
response message
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Fig. 4. Web of Trust OLSR extension timestamp exchange response-response
message

first two bytes of the “Challenge” field are used for the
same purpose 1;

� after signing, the “Signature Size” field is updated with
the size of the signature, the end of the message is filled
with padding as needed in order to align it on 32-bits,
and the “Message Size” field is updated with the number
of bytes measured from the beginning of the “Message
Type” field till the end of the padding (or the signature,
if padding is not present).

C. New message types

To extend the protocol with the new functionalities we had
to define four new message types.

� Challenge Message
� Challenge Reponse Message
� Response Response Message
� Basic Signature Message

1“Timestamp” and “Challenge” fields are chosen as filling instead of
constant values, for the purpose of adding entropy to the signature.
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Fig. 5. Web of Trust OLSR extension basic signature message

D. Protocol tuning

In order to permit a correct operation of the extended
protocol, some OLSR parameters had to be adapted. The new
recommended values are:

� HelloInterval, from 2.0 to 6.0
� HelloValidityTime, from 6.0 to 60.0
� TcInterval, from 5.0 to 15.0
� TcValidityTime, from 15.0 to 75.0
� MidInterval from 5.0 to 15.0
� MidValidityTime, from 15.0 to 75.0
� HnaInterval, from 5.0 to 15.0
� HnaValidityTime, from 15.0 to 75.0

E. Previous work

The existing security extension for OLSR [7] provides
integrity for OLSR packets through digital signatures ob-
tained using a symmetric key shared among the nodes. No
confidentiality or integrity for user traffic is provided. The
signature is performed at the OLSR packet level, while the
OLSR messages are delivered without additional processing.
OLSR packets are signed by every forwarding hop, thus the
assumption made is that each forwarder trusts the previous
forwarder and the source of the message. This assumption is
straightforward if we consider that in [7] all nodes also share
a common secret. Our Web of Trust extension provider all the
features of the existing security extension for OLSR [7] but it
is not necessary to rely on a pre-shared secret between all the
nodes.

III. TRUST MODEL

The key idea of this paper is to use of a Web of Trust
between the network nodes, to authenticate and authorize
routing information without a pre-shared secret. The Web of
Trust is a distributed, non-hierarchical trust model to validate
public key’s ownership.

Traditional, hierarchical Public Key Infrastructures (PKIs)
rely on a root Certification Authority (CA), trusted by all
users. The CA, by using signed electronic documents called
Digital Certificates, assures the validity of public keys. A CA
may act as an introducer, i.e. validate public keys directly,
or as a meta-introducer, i.e. empower lower level Certifica-
tion Authorities to validate keys in its place. CAs are also
responsible for issuing Certificate Revocation Lists (CRLs),
which include certificates whose validity has been revoked.
The whole structure relies on all users’ trust in the root CA
and on the secrecy of the root CA’s private key.



We believe that in a wireless community network without a
central administration, a PKI model based on centralized third
parties is not suitable.

By contrast, we based our work on the Web of Trust
model [8], where each user validates other users’ public
keys by signing them, and thus becoming an introducer of
these. When key signature takes place, a validity level and a
trust level are assigned to the signed key. These values are
subjective, i.e. different for every user in the web of trust.

The validity level is an indicator of how much the signing
user considers the signed key to be valid. Three levels are
possible:

� Full
� Marginal
� Invalid

The trust level specifies the trust the signing user puts on
the signed key owner’s ability in key certification. Four trust
values are allowed.

� Ultimate
� Complete
� Marginal
� No trust

This makes possibile to verify a signature even if the signer
is not directly known. In the Web of Trust a key is valid
if a completely trusted signature or two marginally trusted
signatures are affixed to it. Thus users trust other users to
certify key validity, without the need for a central CA, creating
a Web of Trust among themselves: a decentralized and fault-
tolerant reputation system.

The administrators of the network nodes of a wireless
community network create a Web of Trust among themselves2

by signing and distributing each other’s public keys. Each
administrator computes a subjective trust value for every other
node, based on trust rankings given by others or by herself.

In our work we apply the signature to OLSR packets. The
goal of our approach is to avoid the possibility of an external
maliciuos attacker of injecting forged OLSR packets into the
network. Once a packet is successfully verified, its OLSR
messages are considered trusted and forwarded into the mesh
network. Therefore an OLSR message inside a trusted OLSR
packet is considered trusted as well. Trust is not at the single
message level: each node relies only on its 1-hop neighbors,
and on their reputation.

Another security extension that signs OLSR messages in-
stead of packets has been proposed in [2]. However signing
every single message has different drawbacks. The most
evident is on performances: in fact the number of signature
and verifications each node should perform is higher. In a
stable network, an OLSR packet carries, on average, 2 to 5
OLSR messages.

Moreover, signing the messages instead of the packets has
also an impact on the use of the Web of Trust model.

2note that usually web of trust relationships between network administrators
is already present, for example for email signing.

When signatures are on a per-packet basis, a node needs
only to know the public keys of its 1-hop neighbours. Signing
every single OLSR message means that to verify received
messages, a node must store the public keys of all the nodes
of the mesh network. This does not scale well with the size of
the network. It may happen to have nodes discarding messages
from far nodes that are not in the web of trust. This could lead
to severe routing problems, as different nodes may have too
different views of the network topology.

IV. SECURITY ANALISYS

In this section we present a security analisys of our work
following the guidelines provided in RFC 4593 [1], where
generic threats to routing protocols are summarized.

With respect to the source of the threats our work focuses
on outsider attackers, therefore the case of Byzantine threat
sources is not in the goals of this paper.

The OLSR Web of Trust extension is able to guarantee that
routing information in the routers’ database is authentic and
authorized. An external attacker is not able to insert bogus data
in the routing database of a network node, unless she owns a
trusted key.

With respect to [1] a mesh network running OLSR with
the Web of Trust extension is not vulnerable to the following
attacks:

� Network congestion
� Blackhole
� Starvation
� Looping
� Cut
� Delay
� Partition
� Churn
� Instability
These attacks are targeted to the network as a whole, but

because it is not possibile to inject bogus data in the routers’
database the attacks are not feasible. This is true as long as
the private key of a network node is not compromised.

The underlaying trasport layer (UDP) is not protected by
our security extension, an malicious network node may run
one of the following attacks against a single node:

� Clog: a network node may starve for some resources,
especially for CPU consumption, if it receives more
routing protocol packets than the amount it can process.
The CPU bottleneck a node may experience is due the
use of public key cryptography, that requires plenty of
CPU time.

� Eavesdrop: an attacker can learn the topology of the
network sniffing the routing traffic, because data is signed
but not encrypted.

� Overcontrol
The authors of the OLSR protocol security extension de-

scribed in [7] present a security analisys covering three attacks:
i) Node isolation, ii) Node spoofing and iii) Link spoofing.
Regarding these attacks we can make the following consider-
ations regarding the OLSR Web of Trust extension:



� Node isolation: this attack is possible because we have
no control on the trasport layer. An attacker may also
create interference on the physical link to perform node
isolation.

� Node spoofing: this attack is not feasible unless the
attacker has access to the private key of the node she
wants to spoof.

� Link spoofing: this attack is not feasible unless the
attacker has access to the private key of a trusted node.

We remark that spoofing attacks are not possibile, but node
isolation is possible running a DOS attack agaist a single node.

In timestamp-exchange messages, values of “Signature
Size” and “Message Size” fields are not included when com-
puting the signature, thus they are not verified for integrity
and could be tainted through a man in the middle attack. We
here suppose that the physical integrity of the nodes and the
secrecy of stored private keys have not been compromised.

The simple modification of the above-cited fields should
have the only effect of affecting the set of bytes in the packet
considered as a signature by the receiver. This set of bytes
would be a valid signature with respect to the originator
with probability very close to zero, thus certainly the packet
would be dropped by the receiver after unsuccessful signature
verification.

If in addition to the “Signature Size” and “Message Size”
fields, the signature or the final padding are modified, asym-
metric cryptography’s properties render the task of creating
a valid new signature, without knowing the private key of
the originator, practically impossible. So also in this case, the
packet would be dropped by the receiver.

Having the receiver drop packets that were correctly formed
by the originator would result in a Denial of Service (DoS). But
this may be also obtained by tainting every other byte in the
message, hence the proposed solution for managing variable-
size signatures does not add extra vulnerabilities with respect
to the described scenario.

V. IMPLEMENTATION

The implementation of the Web of Trust OLSR extension is
a plugin for the UniK OLSR Implementation, also known as
olsrd [9], which provides the following advantages over other
implementations:

� modularity - new plugins can be added without changing
the main codebase;

� license - the source code is released under a BSD-style
license, i.e. it is freely available and modifiable;

� popularity - it is used by many community networks who
also actively contribute to test, extend and enhance it;

� portability - written in C, runs on a wide range of
hardware platforms (i386, ARM, MIPSEL, ...), including
embedded devices, and operating systems (GNU/Linux,
Mac OS, OpenWRT, *BSD, Windows, . . . ).

Furthermore we use the GnuPG Made Easy (GPGME)
library, part of the GNU Privacy Guard (GnuPG) [10], i.e.
the GNU project’s implementation of the OpenPGP standard,

TABLE I
MEASURED TIMES FOR SOME CRYPTOGRAPHIC OPERATIONS

Symmetric RSA DSA measure unit
Length of the key 128 1024 1024 bits
Basic signature verification 0.132 159.422 150.784 milliseconds
Basic signature adding 0.05 55.477 60.130 milliseconds
Challenge verification 0.689 93.274 98.664 milliseconds
Challenge-response verification 0.759 170.079 196.656 milliseconds
Challenge-response creation 0.522 45.188 49.327 milliseconds
response-response verification 0.141 175.373 194.526 milliseconds
response-response creation 0.532 78.992 82.78 milliseconds

The correctness of the implementation is verified. To test
the performance of the implementation we use as a reference
the existing Secure Extension to the OLSR protocol[7]

In table I we provide some measures from an emulation
performed using the Netkit [11] network emulator running on
a computer with an AMD64 2GHz CPU.

The “Symmetric” column refers to [7], which uses 128 bit
long keys, which is a good trade-off between performance and
security using symmetric cryptography. In order to provide a
similar level of security with asymmetric cryptography, to our
advice at least 1024 bits long keys should be employed.

As we expected the per task processing time is much higher,
but in respect to the OLSR protocol times, the nodes do
achieve to discover the topology of the network and route
correctly the packets.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a novel approach to secure
routing control traffic in wireless mesh network. The solution
we propose
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